# Rigorous Analytical Expressions for the Effective Dielectric Constants of the Shielded Symmetrical Bandline 

Nasreddine Benahmed<br>University of Tlemcen, Algeria


#### Abstract

This article is a continuity of the reference [1] and it presents a set of accurate closed-forms formulas for the effective dielectric constants of the shielded symmetrical bandline. This formulas are based on rigorous analysis by finite element method (FEM) [2], method of moment (MoM) [3] and curves fitting techniques.

The good coherence of the two numerical methods (FEM and MoM) [1] allows to generate rigorous analytical solutions for a wide-range of discontinuity angles and are suitable for all shielded symmetrical bandlines which have an outer-inner conductors radius ratio between 2 and 6 .

These expressions can be easily implemented in CAD simulation tools, to design many components as RF resonators, RF couplers [1], filters, transmission lines,... for wireless communication and probes for material characterization [4].


## INTRODUCTION

The electrical properties of a lossless shielded symmetrical bandline with a quasi-TEM-mode can be described in terms of even ( $\mathrm{Z}_{\mathrm{oe}}, \varepsilon_{\mathrm{effe}}$ ) and odd ( $\mathrm{Z}_{00}, \varepsilon_{\text {effo }}$ ) mode impedances and effective dielectric constants, and its primary parameters [L] and [C].

A variety of numerical techniques are available to accurately determine the characteristic impedance, the effective dielectric constant and the primary parameters of the shielded symmetrical bandline. But they are time-consuming and too tedious for use in circuit design, where closed-form analytical models are to be preferred. By applying FEM and MoM analyses along with curve-fitting strategies, it is possible to develop these closedform expressions for determining the characteristic impedance, the effective dielectric constant and primary parameters of the shielded symmetrical bandline.

In [1], a set of closed-form equations was developed to determine the characteristic impedances and the primary inductance and capacitance matrices (the [L] and [C] matrices, respectively). In order to complete the study, we present rigorous analytical expressions for the effective dielectric constants of the shielded symmetrical bandline having an outer-inner conductors radius ratio between 2 and 6 .

## SHIELDED SYMMETRICAL BAND LINE

The line is assumed to be lossless with inner conductors of radius $r_{0}$, negligible thickness $w$, a discontinuity angle $\theta$ and an outer shield of radius $\mathrm{r}_{\mathrm{b}}$. Dielectric materials with permittivities $\varepsilon_{\mathrm{r} 1}$ and $\varepsilon_{\mathrm{r} 2}$ are placed respectively inside the bands and between the bands and the shield.


Figure 1 : Cross section of the shielded symmetrical bandline.

## NUMERICAL RESULTS

The numerical results for the effective dielectric constant of the shielded symmetrical bandline using the FEM and MoM methods are shown in figures 2 to 4 . These results demonstrate the excellent coherence between the FEM and MoM methods.


Figure 2 : Effect of the discontinuity angle on the even mode effective dielectric constant using


Figure 3 : Effect of the discontinuity angle on the even mode effective dielectric constant using MoM.


Figure 3 : Effect of the discontinuity angle on the odd mode effective dielectric constant.

## DERIVATION OF ANALYTICAL MODELS <br> 1.EVEN MODE EFFECTIVE DIELECTRIC CONSTANT

The even mode effective dielectric constant ( $\varepsilon_{\text {effe }}$ ) of the shielded symmetrical bandline can be expressed by the relations (1) and (2) for $2 \leq r \leq 6$ and $0<\theta<180^{\circ}$.

- For $\varepsilon_{r 2} / \varepsilon_{r 1} \geq 1$
$\varepsilon_{e f f e}=\varepsilon_{r 1}\left(\varepsilon_{e f f 1}+a_{o}\left(b_{0}-2.3\right)\right)$
- For $\varepsilon_{r 2} / \varepsilon_{r 1}<1$
$\varepsilon_{e f f e}=\varepsilon_{r 1}+\varepsilon_{r 2}\left(1-\varepsilon_{e f f 1}-a_{o}\left(\frac{1}{b_{0}}-2.3\right)\right)$
Where:
$a_{o}=1.01474-0.00126 \theta-5.97810^{-6} \theta^{2}$
$b_{o}=\varepsilon_{r 2} / \varepsilon_{r 1}$
$\varepsilon_{e f f 1}=\varepsilon_{\text {eff }}{ }^{*}+b_{1} \theta+b_{2} \theta^{2}$
$\varepsilon_{\text {eff** }}=2.3+0.01061 e^{-(r-2) / 1.53801}$
$b_{1}=3.007410^{-4}-0.00103 e^{-(r-2) / 1.27842}$
$b_{2}=-4.1142510^{-6}-5.6289710^{-6} r+1.2225210^{-6} r^{2}$
$-8.2940710^{-8} r^{3}$
$r=r_{b} / r_{o}$


## 2.ODD MODE EFFECTIVE DIELECTRIC CONSTANT

For $2 \leq r \leq 6$ and $0<\theta<180^{\circ}$ the odd mode effective dielectric constant ( $\varepsilon_{\text {effo }}$ ) is expressed by the relations (1) and (2), where:
$a_{o}=0.51371+3.5310^{-3} \theta-5.388810^{-5} \theta^{2}$
$+3.5340710^{-7} \theta^{3}-9.0770710^{-10} \theta^{4}$
$b_{o}=\varepsilon_{r 2} / \varepsilon_{r 1}$
$\varepsilon_{\text {eff } 1}=\varepsilon_{\text {eff }}+b_{1} \theta+b_{2} \theta^{2}+b_{3} \theta^{3}$
$\varepsilon_{\text {eff }}=1.65706+0.07192 e^{-(r-2) / 0.94195}$
$b_{1}=2.0928410^{-4}+0.00171 e^{-(r-2) / 1.12538}$
$b_{2}=-1.571310^{-6}-1.2475 e^{-(r-2) / 1.00823}$
$b_{3}=1.973810^{-9}+1.3734910^{-8} e^{-(r-2) / 0.90595}$
$r=r_{b} / r_{o}$
The relative error between the numerical and the analytical results are less than $2 \%$ in a wide range, indicating the good accuracy of the proposed expressions for the shielded symmetrical bandline.

## CONCLUSION

This article presents a set of accurate closedform formulas for the dielectric constants ( $\varepsilon_{\text {effe }}$, $\varepsilon_{\text {effo }}$ ) of the even and odd modes of the shielded symmetrical bandlines.

The expressions obtained from the finite element method and the moments method, are valid in a wide range of the discontinuity angle and the outer-inner conductors radius ratio.

## REFERENCES

1. N. Ben Ahmed and M. Feham, Analyzing EM parameters for shielded bandline, Microwaves \& RF, March 2006, pp.86-92.
2. N. Ben Ahmed and M. Feham, Finite Element Analysis of RF couplers with Sliced Coaxial Cable, Microwave Journal, Vol. $2 \mathrm{~N}^{\circ} 2$, 2000, pp.106-120.
3. A.R. Djordjevic, D.Darco, M.C. Goran, T.K. Sarkan, Circuit Analysis Models for Multiconductors Transmission Lines, Artech Housse, 1997.
4. N. Ben Ahmed and M. Feham, Design NMR probes at high frequencies, Microwaves \& RF, Vol. 41, No. 2, 2002, pp.77-103.
