# **Rigorous Analytical Expressions for the Effective Dielectric Constants of the Shielded Symmetrical Bandline**

**Nasreddine Benahmed** 

University of Tlemcen, Algeria

## ABSTRACT

This article is a continuity of the reference [1] and it presents a set of accurate closed-forms formulas for the effective dielectric constants of the shielded symmetrical bandline. This formulas are based on rigorous analysis by finite element method (FEM) [2], method of moment (MoM) [3] and curves fitting techniques.

The good coherence of the two numerical methods (FEM and MoM) [1] allows to generate rigorous analytical solutions for a wide-range of discontinuity angles and are suitable for all shielded symmetrical bandlines which have an outer-inner conductors radius ratio between 2 and 6.

These expressions can be easily implemented in CAD simulation tools, to design many components as RF resonators, RF couplers [1], filters, transmission lines,... for wireless communication and probes for material characterization [4].

### **INTRODUCTION**

The electrical properties of a lossless shielded symmetrical bandline with a quasi-TEM-mode can be described in terms of even  $(Z_{oe}, \epsilon_{effe})$  and odd  $(Z_{oo}, \epsilon_{effo})$  mode impedances and effective dielectric constants, and its primary parameters [L] and [C].

A variety of numerical techniques are available to accurately determine the characteristic impedance, the effective dielectric constant and the primary parameters of the shielded symmetrical bandline. But they are time-consuming and too tedious for use in circuit design, where closed-form analytical models are to be preferred. By applying FEM and MoM analyses along with curve-fitting strategies, it is possible to develop these closedexpressions for determining form the characteristic impedance, the effective dielectric constant and primary parameters of the shielded symmetrical bandline.

In [1], a set of closed-form equations was developed to determine the characteristic impedances and the primary inductance and capacitance matrices (the [L] and [C] matrices, respectively). In order to complete the study, we present rigorous analytical expressions for the effective dielectric constants of the shielded symmetrical bandline having an outer-inner conductors radius ratio between 2 and 6.

#### SHIELDED SYMMETRICAL BAND LINE

The line is assumed to be lossless with inner conductors of radius  $r_o$ , negligible thickness w, a discontinuity angle  $\theta$  and an outer shield of radius  $r_b$ . Dielectric materials with permittivities  $\epsilon_{r1}$  and  $\epsilon_{r2}$  are placed respectively inside the bands and between the bands and the shield.



Figure 1 : Cross section of the shielded symmetrical bandline.

### NUMERICAL RESULTS

The numerical results for the effective dielectric constant of the shielded symmetrical bandline using the FEM and MoM methods are shown in figures 2 to 4. These results demonstrate the excellent coherence between the FEM and MoM methods.



Figure 2 : Effect of the discontinuity angle on the even mode effective dielectric constant using



Figure 3 : Effect of the discontinuity angle on the even mode effective dielectric constant using MoM.



Figure 3 : Effect of the discontinuity angle on the odd mode effective dielectric constant.

### **DERIVATION OF ANALYTICAL** MODELS **1.EVEN MODE EFFECTIVE DIELECTRIC** CONSTANT

The even mode effective dielectric constant  $(\varepsilon_{effe})$  of the shielded symmetrical bandline can be expressed by the relations (1) and (2) for  $2 \le r \le 6$  and  $0 < \theta < 180^{\circ}$ .

• For 
$$\varepsilon_{r2} / \varepsilon_{r1} \ge 1$$
  
 $\varepsilon_{effe} = \varepsilon_{r1} \Big( \varepsilon_{eff1} + a_o \big( b_0 - 2.3 \big) \Big)$  (1)

• For 
$$\varepsilon_{r2} / \varepsilon_{r1} < 1$$
  
 $\varepsilon_{effe} = \varepsilon_{r1} + \varepsilon_{r2} \left( 1 - \varepsilon_{eff1} - a_o \left( \frac{1}{b_0} - 2.3 \right) \right)$  (2)

Where:

4

$$a_{o} = 1.01474 - 0.00126\theta - 5.97810^{-6}\theta^{2}$$

$$b_{o} = \varepsilon_{r2} / \varepsilon_{r1}$$

$$\varepsilon_{eff1} = \varepsilon_{eff^{*}} + b_{1}\theta + b_{2}\theta^{2}$$

$$\varepsilon_{eff^{*}} = 2.3 + 0.01061e^{-(r-2)/1.53801}$$

$$b_{1} = 3.007410^{-4} - 0.00103 e^{-(r-2)/1.27842}$$

$$b_{2} = -4.1142510^{-6} - 5.6289710^{-6}r + 1.2225210^{-6}r^{2}$$

$$-8.2940710^{-8}r^{3}$$

$$r = r_{b} / r_{o}$$

## 2.0DD MODE EFFECTIVE DIELECTRIC **CONSTANT**

For  $2 \le r \le 6$  and  $0 < \theta < 180^{\circ}$  the odd mode effective dielectric constant ( $\varepsilon_{effo}$ ) is expressed by the relations (1) and (2), where:  $a_0 = 0.51371 + 3.5310^{-3} \theta - 5.388810^{-5} \theta^2$ 

+ 3.5340710<sup>-7</sup> 
$$\theta^{3}$$
 - 9.0770710<sup>-10</sup> $\theta^{4}$   
 $b_{o} = \varepsilon_{r2} / \varepsilon_{r1}$   
 $\varepsilon_{eff1} = \varepsilon_{eff^{*}} + b_{1}\theta + b_{2}\theta^{2} + b_{3}\theta^{3}$   
 $\varepsilon_{eff^{*}} = 1.65706 + 0.07192 e^{-(r-2)/0.94195}$   
 $b_{1} = 2.0928410^{-4} + 0.00171 e^{-(r-2)/1.12538}$   
 $b_{2} = -1.571310^{-6} - 1.2475 e^{-(r-2)/1.00823}$   
 $b_{3} = 1.973810^{-9} + 1.3734910^{-8} e^{-(r-2)/0.90595}$   
 $r = r_{b} / r_{o}$ 

The relative error between the numerical and the analytical results are less than 2% in a wide range, indicating the good accuracy of the expressions for proposed the shielded symmetrical bandline.

#### CONCLUSION

This article presents a set of accurate closedform formulas for the dielectric constants ( $\epsilon_{effe}$ ,  $\epsilon_{effo}$ ) of the even and odd modes of the shielded symmetrical bandlines.

The expressions obtained from the finite element method and the moments method, are valid in a wide range of the discontinuity angle and the outer-inner conductors radius ratio.

#### REFERENCES

1. N. Ben Ahmed and M. Feham, Analyzing EM parameters for shielded bandline, Microwaves & RF, March 2006, pp.86-92.

2. N. Ben Ahmed and M. Feham, Finite Element Analysis of RF couplers with Sliced Coaxial Cable, Microwave Journal, Vol.2 N°2, 2000, pp.106-120.

3. A.R. Djordjevic, D.Darco, M.C. Goran, T.K. Sarkan, Circuit Analysis Models for Multiconductors Transmission Lines, Artech Housse, 1997.

4. N. Ben Ahmed and M. Feham, Design NMR probes at high frequencies, Microwaves & RF, Vol. 41, No. 2, 2002, pp.77-103.