Electronics World Cover,TOC,and list of posted Popular Electronics articles QST Radio & TV News Radio-Craft Radio-Electronics Short Wave Craft Wireless World About RF Cafe RF Cafe Homepage RF Cafe in Morse Code Google Search of RF Cafe website Sitemap Electronics Equations Mathematics Equations Equations physics Manufacturers & distributors Manufacturers & Services Consultants Engineer Jobs Twitter LinkedIn Advertise on RF Cafe! Engineering Books Crosswords Engineering Humor Kirt's Cogitations Engineering Event Calendar Day in History RF Engineering Quizzes AN/MPN-14 Radar 5CCG Notable Quotes App Notes Bookstore Calculators Education Engineering Organizations Magazines Software,T-Shirts,Coffee Mugs Articles - submitted by RF Cafe visitors Simulators Technical Writings Advertisers Websites RF Cafe Archives Test Notes Slide Rules RF Cascade Workbook RF Stencils for Visio Shapes for Word Thank you for visiting RF Cafe!

RF Cafe Software

RF Cascade Worbook
 RF Cascade Workbook 2005 - RF Cafe
Calculator Workbook
RF Workbench
Smith Chart™ for Visio
Smith Chart™ for Excel
RF & EE Symbols Word
RF Stencils for Visio

Your RF Cafe
Progenitor & Webmaster

Click here to read about RF CafeKirt Blattenberger
BSEE
KB3UON
EIEIO

Carpe Diem!
(Seize the Day!)

5th MOB:
My USAF radar shop

Airplanes and Rockets:
My personal hobby website

Equine Kingdom:
My daughter Sally's horse riding website

Noise Figure  <-->  Noise Temperature Calculator

This JavaScript calculator converts between noise figure and the equivalent noise temperature.

Conversion Between Noise Figure
and Noise Temperature

Noise Temperature (K) = TREF *

Noise Figure (dB) = 10 * log10 RF Cafe - Noise temperature to noise figure conversion equation

Note that unless otherwise specified TRef = 290 K

So, just what is noise temperature and why is it used? Simply put, noise temperature is the temperature at which a resistor at the component / system input would generate the same amount of noise measured at the output. It goes back to the familiar kTB calculation for thermal noise power. Noise temperature is often used in calculating the overall noise figure of a system that includes an antenna at the input. That is because strictly speaking, a 1-port device like an antenna cannot be defined in terms of noise figure. If you begin with a system at room temperature (290 K) and add a component at the input that itself has a noise temperature of 290 K, the doubling of noise power increases the overall noise figure by 3 dB (2*290-290=290). A 6 dB increase is a 4x increase in noise power (4*290-290=870). Cascaded noise temperature is done just like with noise figure.

Numerical inputs are not error trapped but are converted to absolute values (no negatives).
Calculated values do not change until the "Calculate" button is clicked.

  Reference Temperature: K    
Noise Figure: dB =
  Noise Temperature: K =
NF(dB) TN (°K)   NF(dB) TN (°K)
0.1 7 2.1 180
0.2 14 2.2 191
0.3 21 2.3 202
0.4 28 2.4 214
0.5 35 2.5 226
0.6 43 2.6 238
0.7 51 2.7 250
0.8 59 2.8 263
0.9 67 2.9 275
1.0 75 3.0 289
1.1 84 3.1 302
1.2 92 3.2 316
1.3 101 3.3 330
1.4 110 3.4 344
1.5 120 3.5 359
1.6 129 3.6 374
1.7 139 3.7 390
1.8 149 3.8 406
1.9 159 3.9 422
2.0 170 4.0 438
RF Cafe - Noise figure equation

Related Pages on RF Cafe
- Noise Figure <--> Noise Temperature Calculator
- Noise Power and Voltage
- Cascaded Noise Figure
- Noise Figure Meters & Noise Generators
- Noise Sources

Try Using SEARCH to Find What You Need.  >10,000 Pages Indexed on RF Cafe !

Copyright 1996 - 2016
Webmaster:  Kirt Blattenberger, BSEE - KB3UON
Family Websites:  Airplanes and Rockets | Equine Kingdom

All trademarks, copyrights, patents, and other rights of ownership to images
and text used on the RF Cafe website are hereby acknowledged.