Module 16 - Introduction to Test Equipment
Navy Electricity and Electronics Training Series (NEETS)
Chapter 4:  Pages 4-21 through 4-28

Module 16 − Introduction to Test Equipment

Pages i, 1−1, 1−11, 1−21, 2−1, 2−11, 2−21, 3−1, 3−11, 3−21, 3−31, 4−1, 4−11, 4−21, 5−1, 5−11, 5−21, 5−31, 6−1, 6−11, 6−21, 6−31, 6−41, Index

 

BETA MEASUREMENTS

 

If the transistor is to be tested out of the circuit, plug it into the test jack located on the right-hand side below the meter. If the transistor is to be tested in the circuit, at least 300 ohms must exist between E- B (emitter to base), C-B (collector to base), and C-E (collector to emitter) for accurate measurement. Initial setting of the test set controls is performed as follows:

 

1.    Set the function switch to BETA.

 

2.    Set the POLARITY switch to PNP or NPN (depending on the type of transistor under test).

 

3.    Set the RANGE switch to X10.

 

4.    Adjust METER ZERO for zero meter indication (transistor disconnected).

 

5.    The POLARITY switch should remain ofF while the transistor is connected to or disconnected from the test set; it should then be set to PNP or NPN, as in step 2 above.

 

If the beta reading is less than 10, perform the following steps:

 

1.    Reset the RANGE switch to X1 and reset the meter to zero.

 

2.    After connecting the yellow test lead to the emitter, the green test lead to the base, and the blue test lead to the collector, plug the test probe (not shown) into the jack located at the lower right- hand corner of the test set.

 

3.    When testing grounded equipment, unplug the 115-volt line cord and use battery operation. a beta reading is attained by multiplying the meter reading times the RANGE switch setting. Refer to the transistor characteristics book provided with the tester to determine if the reading is normal for the type of transistor under test.

 

ICO MEASUREMENTS

 

Adjust the METER ZERO control for a zero meter indication. Plug the transistor to be tested into the jack, or connect the test leads to the device. Set the PNP/NPN switch to correspond with the type of transistor under test. Set the function switch to ICO and the RANGE switch to X0.1, X1.0, or X10, as specified by the transistor data book for allowable leakage. Read leakage on the bottom scale and multiply by the range setting figure as required.

 

ELECTRODE Resistance MEASUREMENTS

 

Connect the in-circuit probe test leads to the transistor with the yellow lead to the emitter, the green lead to the base, and the blue lead to the collector. Set the function switch to the OHMS E-B position and read the resistance between the emitter and base electrode on the center scale of the meter marked OHMS.

 

To read the resistance between the collector and base and the collector and emitter, set the function switch to OHMS C-B and OHMS C-E, respectively. These in-circuit electrode resistance measurements are used to correctly interpret the in-circuit beta measurements. The accuracy of beta times 1 and 10 range is ±15 percent only when the emitter-to-base load is equal to or greater than 300 ohms.

 

DIODE MEASUREMENTS

 

Diode in-circuit quality measurements are made by connecting the green test lead to the cathode and the yellow test lead to the anode. Set the function switch to DIODE IN/CKT and the RANGE switch to

 

 

4-21

times 1 position. Ensure that the meter has been properly zeroed on this scale. If the meter reads down- scale, reverse the polarity switch. If the meter reads less than midscale, the diode under test is either open or shorted. The related circuit impedance of this test is less than 25 ohms.

 

Resistance-Capacitance-Inductance (RCL) BRIDGES

 

Resistance, capacitance, and inductance can be measured with precise accuracy by alternating- current bridges. These bridges are composed of capacitors, inductors, and resistors in a wide variety of combinations. These bridges operate on the principle of the Wheatstone bridge; that is, an unknown resistance is balanced against known resistances and, after the bridge has been balanced, the unknown resistance is calculated in terms of the known resistance.

 

The universal Impedance Bridge, Model 250DE (shown in figure 4-18) is used to measure resistance, capacitance, and inductance (RCL) values. It is also used to make other special tests, such as determining the turns ratio of transformers and capacitor quality tests. This instrument is self-contained, except for a source of line power, and has an approximate 500-hour battery life expectancy. It has its own source of 1,000-hertz bridge current with a sensitive bridge balance indicator and an adjustable source of direct current for electrolytic capacitor and resistance testing. The bridge also contains a meter with suitable ranges to test for current leakage on electrolytic capacitors.

 

Resistance-capacitance-inductance bridge - RF Cafe

Figure 4-18. - Resistance-capacitance-inductance bridge.

 

4-22

CONTROLS

 

Figure 4-18 is a panel view of the model 250DE bridge switches, dials, controls, and connections. Refer to the figure as we briefly discuss some of the switches and dials below.

 

·    The Function switch selects the type of bridge circuit that will measure resistance, capacitance, or inductance.

 
·    The RANGE switch selects the multiplier for each function.

 

·    L-R-C decade dials are a DEKASTAT decade resistor that is the main balancing element of the bridge. The setting of the dials after the bridge is balanced indicates the value of inductance, resistance, or capacitance.

 

·    The D-Q dial is used to balance the phase of the capacitance or inductance of the bridge. The setting of the dial after the bridge is balanced indicates the value of dissipation factor (D) or storage factor (Q).

 

·    The GEN-DET switch selects bridge generator and detector connections, ac or dc, internal or external generator. The switch also connects the internal batteries to the battery test circuit.

 
·    The DET Gain control adjusts the sensitivity of the ac-dc detector and turns on power to the generator.

CONNECTIONS

 

L, R, and C terminals 1, 2, and 3 are used to connect unknown resistors, inductors, and capacitors to the bridge. Resistors and inductors are connected between terminals 1 and 2, and capacitors are connected between terminals 2 and 3. EXT BIAS terminals are normally connected with a shorting lug. They allow insertion of a dc voltage or current to bias capacitors or inductors. EXT DET connector is a BNC coaxial socket that allows an external detector to be used with the instrument. It is connected to the bridge at ALL TIMES.

 

EXT D-Q terminals are normally connected with a shorting lug. They allow an external rheostat to extend the range of the D-Q dial. EXT GEN terminals provide a connection to the bridge for an external generator. When the GEN-DET switch is in the AC EXT GEN position, the terminals connect an isolation transformer so that a grounded external generator can be used. When the GEN-DET switch is in the DC EXT GEN position, the terminals are connected directly to the bridge.

 

BATTERY

 

The model 250DE bridge has a battery supply consisting of four 1.5 V dc batteries with an expected life of 500 hours. The battery power supply should be checked before each day's operation. Turn DET Gain control to 1 and set GEN-DET switch to BATT. Test (battery test). If the meter deflects beyond the BAT OK mark, the battery is good.

 

Resistance MEASUREMENTS

 

Resistance is usually measured with direct current for maximum accuracy. The model 250DE bridge can be used to measure resistance with alternating current, but external reactance compensation is usually required. On high-resistance ranges, care should be taken to avoid leakage across a resistor under test. Insulation with a resistance of 109 ohms, which is adequate for most purposes, will cause a measurement

 

 

4-23

error of 1 percent if it shunts a 10-megohm resistor. Using the following steps, you will be able to measure dc resistance ONLY:

 

1.  Turn the DET Gain control to 2.

 

2.  Set the Function switch to R x 1 or R x 10.

 

3.  Set L-R-C decade dials to 3.000.

 

4.  Connect the unknown resistor to R-L terminals 1 and 2.

 

5.  Set the GEN-DET switch to INT DC.

 

6.  Adjust the RANGE switch for minimum detector deflection.

 

7.  Adjust L-R-C decade dials for null, turning the DET Gain control clockwise to increase sensitivity as necessary.

 

8.  The measured resistance is the product of the L-R-C decade dial setting times the RANGE and Function switch settings.

 

Capacitance MEASUREMENTS

 

Capacitance is measured in terms of a two-element equivalent circuit consisting of a capacitor in series with a resistor. The internal ac generator and detector of the model 250DE bridge are tuned to 1 kilohertz. Other frequencies can be used, but an external generator and detector are required. The D and Q ranges of the bridge can be extended by use of an external rheostat connected to the terminals provided. The measured capacitance is the product of the L-R-C dial setting times the setting of the RANGE switch. Using the following steps, you can make a standard capacitance measurement:

 

1.  Turn the DET Gain control to 1.

 

2.  Set the Function switch to C, D x 0.1 or D x 0.01 Series.

 

3.  Set L-R-C decade dials to 3.000 and D-Q dial to 0.

 

4.  Connect the unknown capacitor to C terminals 2 and 3.

 

5.  Set the GEN DET switch to INT 1 kHz.

 

6.  Adjust the RANGE Switch for minimum detector deflection.

 

7.  Adjust L-R-C decade dials and D-Q dial alternately for a minimum meter deflection, turning the DET Gain control clockwise to increase sensitivity as necessary.

 

8.  The measured capacitance is the product of the L-R-C decade dial settings.

 

9.  The measured dissipation factor (D) is the product of the D-Q setting times the Function switch setting.

 

Inductance MEASUREMENTS

 

Inductance is measured in terms of a two-element equivalent circuit consisting of an inductance either in series or in parallel with a resistance. The internal ac generator and detector of the model 250DE bridge are tuned to 1 kHz. Other frequencies can be used, but like capacitance measurements, an external

 

 

4-24

generator and detector are required. When inductance is being measured in ac or dc, it should be realized that iron-core inductors are sensitive to current variations. Quantitative measurements of dc effects can be made by supplying current to the unknown inductor through the EXT BIAS terminal. use the following steps to make inductance measurements:

 

1.  Turn the DET Gain control to 1.

 

2.  Set the Function switch to L PARALLEL if Q is greater than 10 to L Series if Q is less than 10.

 

3.  Set L-R-C decade dials to 3.000 and D-Q dial to maximum.

 

4.  Connect the unknown inductor to the R-L terminals 1 and 2

 

5.  Set the GEN DET switch to INT 1 kHz.

 

6.  Adjust the RANGE switch for minimum detector deflection.

 

7.  Adjust the L-R-C decade dials and D-Q dial alternately for a minimum meter deflection, turning the DET Gain control clockwise to increase sensitivity as necessary.

 

8.  The measured inductance is the product of the L-R-C decade dial setting times the RANGE switch setting.

 

9.  The measured storage factor (Q) is read directly from the D-Q dial, inner scale for parallel and outer scale for series inductance.

 

Summary

 

The important points of this chapter are summarized in the following paragraphs. You should be familiar with these points before continuing with your studies of test equipment.

 

A MULTIMETER is a single meter that combines the functions of a dc ammeter, a dc voltmeter, an ac ammeter, an ac voltmeter, and an ohmmeter. Observe the following safety precautions when using a multimeter:

 
·    De-energize and discharge the circuit completely before connecting a multimeter.

 
·    Never apply power to the circuit while you are measuring resistance with an ohmmeter.

 
·    Connect the ammeter in series for current measurements and in parallel for voltage measurements.

 

·    Be certain the multimeter is switched to ac before attempting to measure ac circuits.

 

·    Observe proper dc polarity when measuring dc circuits.

 
·    Always start with the highest voltage or current range.

 
·    Select a final range that allows a reading near the middle of the scale.

 
·    Adjust the "0 ohms" reading after changing resistance ranges and before making a resistance measurement.

 

 

4-25

 

MULTIMETER - RF Cafe

 

An ELECTRONIC DIGITAL MULTIMETER is used in sensitive electronic circuits where only extremely small amounts of energy can be extracted without disturbing the circuits under test, or causing them to be inoperative.

 

ELECTRONIC DIGITAL MULTIMETER - RF Cafe

 

The Differential VOLTMETER is a precision piece of test equipment used to compare an unknown voltage with an internal reference voltage and to indicate the difference in their values.

 

 

4-26

 

Differential VOLTMETER - RF Cafe

 

A SEMICONDUCTOR Test SET is used to measure the beta of a transistor, the resistance appearing at the electrodes, and the reverse current of a transistor or semiconductor diode. It also measures a shorted or open condition of a diode, the forward transconductance of a field-effect transistor, and the condition of its own batteries.

 

 

4-27

 

SEMICONDUCTOR TEST SET - RF Cafe

 

Resistance, capacitance, and inductance are measured for precise accuracy by RCL BRIDGES. They are composed of capacitors, inductors, and resistors and operate on the principle of the Wheatstone bridge.

 

Answers to Questions Q1. Through Q8.

 

A-1.   No external power source is required.

 

A-2.   De-energized.

 

A-3.   Midscale.

 

A-4.   Polarity.

 

A-5.   Rechargeable batteries.

 

A-6.   Simultaneous flashing of display readouts.

 

A-7.   Light-emitting diodes.

 

A-8.   To compare an unknown voltage with a known reference voltage and indicate the difference in their values.

 

 

4-28

NEETS Modules
- Matter, Energy, and Direct Current
- Alternating Current and Transformers
- Circuit Protection, Control, and Measurement
- Electrical Conductors, Wiring Techniques, and Schematic Reading
- Generators and Motors
- Electronic Emission, Tubes, and Power Supplies
- Solid-State Devices and Power Supplies
- Amplifiers
- Wave-Generation and Wave-Shaping Circuits
- Wave Propagation, Transmission Lines, and Antennas
- Microwave Principles
- Modulation Principles
- Introduction to Number Systems and Logic Circuits
- - Introduction to Microelectronics
- Principles of Synchros, Servos, and Gyros
- Introduction to Test Equipment
- Radio-Frequency Communications Principles
- Radar Principles
- The Technician's Handbook, Master Glossary
- Test Methods and Practices
- Introduction to Digital Computers
- Magnetic Recording
- Introduction to Fiber Optics
Note: Navy Electricity and Electronics Training Series (NEETS) content is U.S. Navy property in the public domain.