RF Cafe Software

RF Cascade Workbook 2005 - RF Cafe
RF Cascade Workbook

Calculator Workbook
RF Workbench
Smith Chart™ for Visio
Smith Chart™ for Excel
RF & EE Symbols Word
RF Stencils for Visio

About RF Cafe

Kirt Blattenberger - RF Cafe WebmasterCopyright
1996 - 2016
Webmaster:
Kirt Blattenberger,
 BSEE - KB3UON

RF Cafe began life in 1996 as "RF Tools" in an AOL screen name web space totaling 2 MB. Its primary purpose was to provide me with ready access to commonly needed formulas and reference material while performing my work as an RF system and circuit design engineer. The Internet was still largely an unknown entity at the time and not much was available in the form of WYSIWYG ...

All trademarks, copyrights, patents, and other rights of ownership to images and text used on the RF Cafe website are hereby acknowledged.

My Hobby Website:
 AirplanesAndRockets.com

Try Using SEARCH
to Find What You Need. 
There are 1,000s of Pages Indexed on RF Cafe !

Electronics World Cover,TOC,and list of posted Popular Electronics articles QST Radio & TV News Radio-Craft Radio-Electronics Short Wave Craft Wireless World About RF Cafe RF Cafe Homepage RF Cafe in Morse Code Google Search of RF Cafe website Sitemap Electronics Equations Mathematics Equations Equations physics Manufacturers & distributors Engineer Jobs Twitter LinkedIn Crosswords Engineering Humor Kirt's Cogitations Engineering Event Calendar RF Engineering Quizzes AN/MPN-14 Radar 5CCG Notable Quotes App Notes Calculators Education Magazines Software,T-Shirts,Coffee Mugs Articles - submitted by RF Cafe visitors Simulators Technical Writings RF Cafe Archives Test Notes RF Cascade Workbook RF Stencils for Visio Shapes for Word Thank you for visiting RF Cafe!

S-, h-, T-, Y-, Z-, ABCD- Parameter Conversions

This table of conversion between various forms of 2-port network electrical parameters is difficult to find, so once I finally located a paper that included them1, I felt it was my duty to publish it for public access. The paper is available on the IEEE website by subscribers only. Other have published the full paper without permission of author Frickey. None that I found also include the correction paper2 published a year later that address some of the technicalities of the S- and T-parameter translations when complex impedance reference planes are used. In order to avoid those sticky issues, I have reproduced only the sets of translations that are unaffected. Many thanks to Mr. Frickey for his unique work.

One of the most sought-after sets of conversion is from s-parameters to T-parameters, and then back to s-parameters. This is because matrix multiplications can be performed directly on T-parameters in order to calculate cascaded component responses. That is, s-parameters matrices cannot be multiplied in series to obtain cascaded s-parameters, but T-parameters can be. So, convert your component s-parameters to T-parameters, multiply matrices, then convert the result back to s-parameters.

2-Port Network - RF Cafe
S-Parameters
S-parameters for 2-port networks - RF Cafe
Y-Parameters
Y-parameters for 2-port networks - RF Cafe
Z-Parameters
Z-parameters for 2-port networks - RF Cafe
h-Parameters
h-parameters for 2-port networks - RF Cafe
ABCD-Parameters3
ABCD-parameters for 2-port networks - RF Cafe
The 2-port network shown to the left is representative of that implied in the application of these equations. Basic relationships of voltage and current are given in the table to the right. Many other sources exist on the particulars of 2-port network analysis, so it will not be covered here.

All of the parameter equations make use of complex values for all numbers of impedance and the resulting matrix parameters, i.e., Z = R ± jX.

Z01 and Z02 are the complex impedances of ports 1 and 2, respectively; similarly, Z*01 and Z*02 are the complex conjugates of the respective impedances.


The values R01 and R02 are the real parts of port impedances Z01 and Z02.

If you do not already know, here is the meaning of each type of parameter matrix: S (scattering),
Y (admittance), Z (impedance), h (hybrid), ABCD (chain), and T (chain scattering or chain transfer).

These are all I have, so please do not write to ask if I have others.

S-Parameters from Z-Parameters
S-Parameters from Z-Parameters - RF Cafe S-Parameters from Z-Parameters - RF Cafe
S-Parameters from Z-Parameters - RF Cafe S-Parameters from Z-Parameters - RF Cafe
 
S-Parameters from Y-Parameters
S-Parameters from Y-Parameters - RF Cafe S-Parameters from Y-Parameters - RF Cafe
S-Parameters from Y-Parameters - RF Cafe S-Parameters from Y-Parameters - RF Cafe
 
S-Parameters from h-Parameters
S-Parameters from h-Parameters - RF Cafe S-Parameters from h-Parameters - RF Cafe
S-Parameters from h-Parameters - RF Cafe S-Parameters from h-Parameters - RF Cafe
 
S-Parameters from ABCD-Parameters
S-Parameters from ABCD-Parameters - RF Cafe S-Parameters from ABCD-Parameters - RF Cafe
S-Parameters from ABCD-Parameters - RF Cafe S-Parameters from ABCD-Parameters - RF Cafe
 
T-Parameters from Z-Parameters
T-Parameters from Z-Parameters - RF Cafe T-Parameters from Z-Parameters - RF Cafe
T-Parameters from Z-Parameters - RF Cafe T-Parameters from Z-Parameters - RF Cafe
 
T-Parameters from Y-Parameters
T-Parameters from Y-Parameters - RF Cafe T-Parameters from Y-Parameters - RF Cafe
T-Parameters from Y-Parameters - RF Cafe T-Parameters from Y-Parameters - RF Cafe
 
T-Parameters from h-Parameters
T-Parameters from h-Parameters - RF Cafe T-Parameters from h-Parameters - RF Cafe
T-Parameters from h-Parameters - RF Cafe T-Parameters from h-Parameters - RF Cafe
 
T-Parameters from ABCD-Parameters
T-Parameters from ABCD-Parameters - RF Cafe T-Parameters from ABCD-Parameters - RF Cafe
T-Parameters from ABCD-Parameters - RF Cafe T-Parameters from ABCD-Parameters - RF Cafe
 
Y-Parameters from Z-Parameters
Y-Parameters from Z-Parameters - RF Cafe Y-Parameters from Z-Parameters - RF Cafe
Y-Parameters from Z-Parameters - RF Cafe Y-Parameters from Z-Parameters - RF Cafe
 
Y-Parameters from S-Parameters
Y-Parameters from S-Parameters - RF Cafe Y-Parameters from S-Parameters - RF Cafe
Y-Parameters from S-Parameters - RF Cafe Y-Parameters from S-Parameters - RF Cafe
 
Z-Parameters from T-Parameters
Z-Parameters from T-Parameters - RF Cafe Z-Parameters from T-Parameters - RF Cafe
Z-Parameters from T-Parameters - RF Cafe Z-Parameters from T-Parameters - RF Cafe
 
h-Parameters from S-Parameters
h-Parameters from S-Parameters - RF Cafe h-Parameters from S-Parameters - RF Cafe
h-Parameters from S-Parameters - RF Cafe h-Parameters from S-Parameters - RF Cafe
 
h-Parameters from T-Parameters
h-Parameters from T-Parameters - RF Cafe h-Parameters from T-Parameters - RF Cafe
h-Parameters from T-Parameters - RF Cafe h-Parameters from T-Parameters - RF Cafe
 
ABCD-Parameters from S-Parameters
ABCD-Parameters from S-Parameters - RF Cafe ABCD-Parameters from S-Parameters - RF Cafe
ABCD-Parameters from S-Parameters - RF Cafe ABCD-Parameters from S-Parameters - RF Cafe
 
ABCD-Parameters from T-Parameters
ABCD-Parameters from T-Parameters - RF Cafe ABCD-Parameters from T-Parameters - RF Cafe
ABCD-Parameters from T-Parameters - RF Cafe ABCD-Parameters from T-Parameters - RF Cafe

1. IEEE Transactions on Microwave Theory and Techniques. Vol 42, No 2. February 1994.
    Conversions Between S, Z, Y, h, ABCD, and T Parameters which are Valid for Complex Source
    and Load Impedances.
    By Dean A. Frickey, Member, IEEE

2. IEEE Transactions on Microwave Theory and Techniques. Vol 43, No 4. April 1995.
    A correction was printed by Roger B. Marks and Dylan F. Williams.

3. I1 formula corrected to use V2 rather than V1. Thanks to Christoph T. for noticing.