Search RFCafe.com                           
      More Than 18,000 Unique Pages
Please support me by ADVERTISING!
Serving a Pleasant Blend of Yesterday, Today, and Tomorrow™ Please Support My Advertisers!
   Formulas & Data
Electronics | RF
Mathematics
Mechanics | Physics
     AI-Generated
     Technical Data
Pioneers | Society
Companies | Parts
Principles | Assns


 About | Sitemap
Homepage Archive
        Resources
Articles, Forums Calculators, Radar
Magazines, Museum
Radio Service Data
Software, Videos
     Entertainment
Crosswords, Humor Cogitations, Podcast
Quotes, Quizzes
   Parts & Services
1000s of Listings
 Vintage Magazines
Electronics World
Popular Electronics
Radio & TV News
QST | Pop Science
Popular Mechanics
Radio-Craft
Radio-Electronics
Short Wave Craft
Electronics | OFA
Saturday Eve Post

Software: RF Cascade Workbook
RF Stencils Visio | RF Symbols Visio
RF Symbols Office | Cafe Press
Espresso Engineering Workbook

Aegis Power  |  Alliance Test
Centric RF  |  Empower RF
ISOTEC  |  Reactel  |  RFCT
San Fran Circuits

ConductRF Phased Matched RF Cables - RF Cafe

Copper Mountain Technologies (VNA) - RF Cafe

Innovative Power Products (IPP) Directional Couplers

Please Support RF Cafe by purchasing my  ridiculously low-priced products, all of which I created.

RF Cascade Workbook for Excel

RF & Electronics Symbols for Visio

RF & Electronics Symbols for Office

RF & Electronics Stencils for Visio

RF Workbench

T-Shirts, Mugs, Cups, Ball Caps, Mouse Pads

These Are Available for Free

Espresso Engineering Workbook™

Smith Chart™ for Excel

Temwell Filters

Averages

As shown in the equations below, there are many different types of averages used in science and mathematics. The one that is probably the most familiar is the Arithmetic Mean.

Arithmetic Mean

To calculate the arithmetic mean with discrete random variables, add up all the terms, and then divide by the number of terms in the distribution. This type of average is commonly called the "average". The mean of a statistical distribution with a continuous random variable is the value of that random variable, formally denoted by the lowercase Greek letter mu (µ). The area under the probability density function curve to the left of µ is the same as the area under the curve to the right of µ (i.e., symmetry).

Arithmetic mean - RF Cafe, n is an integer

Arithmetic Mean Formula

Median

The median of a distribution with discrete random variables where the number of terms is odd then uses the value of the term in the middle. This is the value such that the number of terms having values greater than or equal to it is the same as the number of terms having values less than or equal to it. If the number of terms is even, then the median is the average of the two terms in the middle, such that the number of terms having values greater than or equal to it is the same as the number of terms having values less than or equal to it. The median of a distribution with a continuous random variable is the value m such that the probability is at least 0.5 (50%) that a randomly chosen point on the function will be less than or equal to m, and the probability is at least 0.5 that a randomly chosen point on the function will be greater than or equal to m.

Discrete Random Variable vs. Continuous Random Variable

Since the definitions of Median, Mode, and Range all depend on whether the variables are discrete or continuous, the difference is explained here for clarity. Discrete variables are a countable collection of values, e.g., the numbers 2.2, 5.9, 2.0, 3.4, 6.2, 4.5. There are exactly six values. The mean for them is, per the above formula, 24.2/6 = 4.0(3). The actual result on a calculator is 4.0333333...., but since the precision of all the numbers in the set is two significant figures, the result has to be the same. It has therefore been rounded down to 4.0.

A continuous variable refers to a mathematical function that takes on an infinite number of values between some lower and upper value. For instance, y = x2 [x=14] is the shape of a parabola and is defined for all values of x between 1 and 4. Therefore, y take on an infinite number of values between 1 and 16. Arriving at the answer requires using calculus to divide the integral of the range (x=14, which results in the value of 63) by the range of x (which is 4-1 = 3), to get 63/9 = 7. The precision of the range of x definition is one significant digit, so the answer is the same precision. In this case, even if the range of x was defined as x=1.00000 to x = 4.00000, the answer would still be exactly 7 (7.00000) because the ration 63/9 is exact.

Mode

The mode of a distribution is the value of the term that occurs the most often. Often a distribution will have more than one mode, especially if there are not many terms. This happens when two or more terms occur with equal frequency, and more often than any of the others. A distribution with two modes is called bimodal. A distribution with three modes is called trimodal. The mode of a distribution with a continuous random variable is the maximum value of the function. As with discrete distributions, there may be more than one mode.

Range

The range of a distribution with discrete random variables is the difference between the maximum value and the minimum value. For a distribution with a continuous random variable, the range is the difference between the two extreme points on the distribution curve, where the value of the function falls to zero. For any value outside the range of a distribution, the value of the function is equal to 0.

Weighted Arithmetic Mean

Weighted arithmetic mean - RF Cafe

, n is an integer

Weighted Arithmetic Mean

Geometric Mean

geometric mean

Geometric mean - RF Cafe, n is an integer

Geometric Mean

Harmonic Mean

Harmonic mean - RF Cafe, n is an integer

Harmonic Mean

Root Mean Square (rms)

Root mean square (rms) - RF Cafe n is an integer

Root Mean Square (rms)

Temwell Filters
Innovative Power Products (IPP) RF Combiners / Dividers

RF Cascade Workbook 2018 by RF Cafe

Innovative Power Products Passive RF Products - RF Cafe