May 1931 RadioCraft
[Table of Contents]
People old and young enjoy waxing nostalgic about and learning some of the history of early electronics.
RadioCraft was published from 1929 through 1953. All copyrights are hereby acknowledged. See all articles
from RadioCraft.

Open up a radio transceiver chassis that operates below
300 MHz (VHF and lower), particularly one built before the advent of highly integrated circuits,
and you will almost certainly find many transformers and inductors. Without the advantage of using microstrip
type distributed impedance matching, the use of wirewound transformers and inductors is your only option
for tuning filters and implementing interstage impedance matching. In the days of vacuum tubes in all
stages of a transmitter and/or receiver, transformers were found in every stage from baseband through
RF. Knowing how to design and build efficient transformers was essential to proper operation. This circa
1931 article provided a basis for understanding the science of mutual inductance and magnetic coupling.
Design of RadioFrequency Transformers
As modified by the problems which have been introduced by the multistage screengrid amplifier
By Sylvan Harris
From the viewpoint of the designer of a radiofrequency amplifier which is to be part of a radio
receiver, when he has once determined the number of tuned and untuned stages he wants to use and the
amount of amplification he must have, there remain really only three problems that he must solve. Assume
therefore, that the circuit arrangement of the amplifier is settled and the particular tubes chosen:
the designer then must determine 
(a) the proper voltages to use on the tubes and the manner of obtaining these from the powerpack;
(b) the system of controlling volume and the location of the volumecontrol elements in the circuit;
(c) the actual design of the radiofrequency transformers,
Fig. 1  In the standard screengrid amplifier stage, the high plate resistance of
V1 necessitates a high impedance in L1B and, therefore, loose coupling into the tuned circuit L2BC2.
Fig. 2  The theoretical limit of screengrid amplification; on the basis of 1000
micromhos of mutual conductance, and 0.02·mmf. gridplate capacity in the screengrid tube.
Fig. 3  The maximum voltage amplification of a stage, plotted against the mutual
inductance of an output transformer of good quality. The closer the coupling, the more unequal the gain.
Fig. 4  The curves of amplification here correspond to those of Fig. 3; but are
plotted against frequency, to show the greater efficiency at the lowwave end of the broadcast band.
Fig. 5  A transformer designed to bring about more even gain throughout the range
of broadcast frequencies. LoCo is tuned to about 500 kc., or 600 meters; L1 is smaller.
Fig. 6  The characteristic curve of the transformer of Fig. 5, due to the decreasing
reactance of Co as the frequency rises.
Fig. 7  The completed radiofrequency transformer, designed to overcome the disparity in amplification
at the ends of the band. Lo is to be shunted by a 40·mmf. capacity.
Fig. 8  The slotwound primary loading coil Lo of the circuit shown in Fig. 5, as
applied to a standard R.F. transformer, The diameter of the coil is very small.
Fig. 9  Curves obtained from a commercial antenna transformer: in (2), the primary is smaller and
the coupling is looser. Note that the vertical scale is logarithmic.
Fig. 10  Selectivity curves at 1000 kc. of interstage coupler (A) and aerial coupler
(B). The former has the high tube resistance R1, and the latter the high aerial capacity, in the primary
circuit.
Fig. 11  Above, effect of frequency on a coil; the "dissipation constant," inversely
proportional to the resistance is the resultant of the effects shown below and of the frequency itself,
which is a straight slope.
The determination of the tube voltages is more or less determined by the manufacturer's ratings;
which often must be somewhat modified by considerations of powerpack load, crossmodulation effects,
gridcircuit overload, etc. The selection of the system of volume control is apart from the design of
the amplifier proper; that is to say, the system to be chosen is one which will have no effect on the
tuning of the amplifier, but will exert its control over sufficient range to enable the operator to
reduce the volume of the most powerful broadcaster to zero.
Such matters are of course, quite intricate, but the analysis of each of the several problems can
be made somewhat more or less independently of each other; and, after all, perhaps the most important
problem of all is that of designing the radiofrequency transformers.
We need hardly consider the tuning condensers at all. The design of these circuit elements is practically
fixed. The economics of condenser design have practically fixed the number and size of the plates and
the general arrangement of the frame structure; so that there is not much that can be done in this matter.
Inductance Found by Experiment
Consequently, the first part of the problem of radiofrequency transformer design is to calculate
the inductance required to enable us to tune over the broadcast range with the particular condenser
capacity we intend to use. Of course, knowing the required inductance value, only, is not sufficient;
a coil must be constructed which will have this inductance. This can best be done by cutandtry methods,
backed up by a certain amount of experience along this line.
In radiofrequency amplifiers designed around screengrid tubes, which have very high plate resistances,
the proportioning of the tuning inductance to cover the tuning range involves only the secondary of
the coil. In other words, with the tuning condenser connected to the secondary, and with the coupling
between the circuits quite loose because of the high plate resistance of the tubes, the tuning range
is determined almost wholly by the secondary circuit, and independently of the primary. (Of course,
the separate capacities of the primary and secondary coils, as well as their mutual capacity, have an
influence on the tuning range; but this effect should be interpreted as a variation in the secondary
inductance rather than as a coupling between the two circuits.)
At any rate, let us suppose we have determined all these things; we have fixed the tube voltages,
the tuning capacity and the secondary tuning inductance. We must now consider the design of the primary
circuit of the R.F. transformer. Fig. 1 shows the simple circuit of a tuned R.F. amplifier using screengrid
tubes. The first thing we must determine about this circuit, in order to assist us in our work of transformer
design, is how much voltage amplification per stage this amplifier can handle.
We all know that, if we have too much gain per stage, the circuit will oscillate, because of the
feedback through the tubes, between the plates and grids. Of course, we are using screengrid tubes,
in which the grids are supposed to be screened from the plates; but it must not be forgotten that this
screening is not 100 percent effective. Furthermore, there are other means of coupling between stages
which are conducive to regeneration and oscillation; so we must be careful not to make the gain per
stage too high.
Limit of Amplification
Fig. 2 shows the maximum gain per stage which can be used, assuming that the only source of feedback
is that which occurs within the tube between plate and grid. In other words, if this were the only coupling
we had between stages, the gain shown in Fig. 2 is the maximum that could be used without having the
circuits oscillate. If there is external coupling between the stages (as for example, in coupling resistors
or condensers) the maximum amplification that can be used is less than that shown in Fig. 2; how much
less, depends upon the amount and the kind of external coupling.
At any rate, as we can see in Fig. 2, we cannot expect a gain per stage of much more than 80, in
a threestage amplifier using type '24 tubes. This may seem quite large; as a matter of fact it is large.
It is extremely difficult to realize a gain per stage of even 70 or 80 over the broadcast range, except
in an amplifier which is very well made, shielded, choked and bypassed with extreme care. This, of course,
is out of the question in commercial radio receivers, on account of the cost involved. As a matter of
fact, in welldesigned commercial receivers, we can generally count on obtaining perhaps half the maximum
possible gain; a limit due to the interstage couplings external to the tubes.
The maximum possible gain is a function of the mutual conductance of the tube; that is, the greater
the mutual conductance, the greater the possible gain. (See the article, "Mutual Conductance and Its
Associates," March, 1931, RadioCraft.  Editor.) On the other hand, the greater the number of stages,
the lower the maximum possible amplification. The same is true of the gridplate capacity of the tube;
to double it reduces the amplification thirty per cent.
We must now consider how much gain per stage we actually obtain in a typical circuit. Of course,
the actual gain depends on the mutual conductance of the tube, the resistance of the tuned circuit (or
the coil's "dissipation constant" Q), and the coupling between the primary and secondary (M). The Rp
of the tube also has an effect on the gain, but this effect is quite small in screengrid tube circuits.
Mutual Inductance of the Coil
In Fig. 3 we have curves which show the relation between the mutual inductance of the transformer
and the voltage amplification obtained at different frequencies. The value of the coil's dissipation
constant Q (which is 6.28 x f x L/R2) is here assumed to be 100; which is a fair value for
commerciallydesigned coils of good quality. On the basis, it can be seen from Fig. 3 that; at 1000
kc., we can expect an amplification of about 32 per stage if the mutual inductance is 50 microhenries.
The curves show that, as we increase the mutual inductance, the gain goes up steadily. This means that,
if we double the primary turns, we will double the gain; because the mutual inductance varies as the
primary turns.
Another thing, which Fig. 3 teaches us, is that the voltage amplification increases as we increase
the frequency. This can, perhaps, be seen more clearly by plotting the curves in a different manner,
as in Fig. 4; here the voltage amplification is shown plotted against the frequency, for various values
of mutual inductance. For example, if the mutual inductance is 50 microhenries, we can expect a gain
of 32 per stage at 1000 kc. as before. However, if we keep the mutual inductance constant and increase
the frequency, (tune to a lower wavelength), we see that the gain rises steadily. This is the frequencycharacteristic
which we obtain in all radiofrequency amplifiers employing the simple twocoil R.F. transformer. At
high frequencies the gain is great, and at low frequencies it is small; and, the greater the mutual
inductance, the steeper the curve.
Problems of MultiStage Design
It must be remembered that the curves shown here are for a single stage. With two stages, alike in
design, the total amplification at any frequency is the square of the amplification of one stage; if
there are three stages, the total amplification is the cube of that of one stage.
This means that, if we plotted the curves of Fig. 4 for three stages instead of one, we should find
the curves very much steeper; and the difficulty which designers find in R.F. amplifiers would be more
obvious. In a threestage amplifier, the R.F. amplification at 1500 kilocycles may be as high as three
to five times that obtained at 550 kilocycles; or even more, depending upon the particular design. It
is on this account that attempts have been made to design R.F. transformers which will give reduced
amplification at the higher frequencies, and greater amplification at the lower frequencies.
It is necessary, at the outset of such a design, to provide for keeping the coupling sufficiently
loose; so that the reaction of the primary circuit will not appreciably affect the secondary tuning.
This is a very necessary requirement, in order to make it possible to tune the amplifier over the entire
broadcast range, while avoiding resonance effects, due to the primary, which would make the tuning of
the secondary uncertain at certain frequencies; such sometimes occur in the tuned circuit coupled to
the antenna, when very large antenna capacities are used, or when the antenna coupling is very tight.
This being the condition  that the coupling between the primary and secondary must be loose  it
is clear that the way in which the amplification varies with frequency will depend mainly upon the design
of the primary circuit. Returning to Fig. 3, it will be obvious that the amplification is dependent
upon the mutual inductance between the primary and secondary. Hence, if .we can make this mutual inductance
vary in any way which we desire, we may likewise be able to control the amplification accordingly.
A Compensatory Coil Design
This is what is done in actual practice; in one design, illustrated in Fig. 5, a local tuned circuit
in the primary, consisting of a loading inductance Lo shunted by a condenser Co, is placed in series
with the regular primary L1. The secondary L2B is of the usual design.
The selfinductance Lo is quite large compared with the inductance L1; so that at low frequencies
(as at 550 kc.) L1 has little effect in comparison. Lo and Co are so proportioned that this local circuit
is resonant at about 500 kilocycles, just above the upper wavelength of the tuning range of the amplifier.
The mutual inductance Mo (between the coil Lo and the secondary L2) is opposed to the mutual inductance
M, between the primary L1 and the secondary L2. In other words, Lo and L1 are arranged to "buck" each
other. Now let us see what happens:
Suppose we tune to a long wave , L1 has little effect because it is a small inductance; the signal
current in the local tuned circuit LoCo is quite large, because we are near the resonance frequency
of the local circuit.
The signal energy is then transferred to the secondary via the mutual inductance Mo, which can be
so adjusted that the amplification is quite large.
Now, suppose we gradually tune to higher and higher frequencies. As the frequency increases, it departs
further and further from the resonant frequency of LoCo, and Lo becomes a choke coil in effect. Co acts
as a bypass condenser more and more, as the frequency increases; so that the high impedance of Lo does
not obstruct the signal to any considerable amount.
Now the regular primary L1 begins to work, transferring power to the secondary via the mutual inductance
M. At very high frequencies, the system acts as if Lo and Co were not present; since Co becomes an effective
bypass. So this is an arrangement which will provide great amplification at low frequencies, because
of the resonance effects in the primary, and, likewise, high amplification because of the usual laws
pertaining to the simple primary circuit L1. By combining these effects we obtain a curve like that
shown in Fig. 6  high at both ends and drooping slightly near the middle. By properly proportioning
the various windings, the drop in the middle of the curve can be made small; and the curve will be as
nearly linear as can be practically desired.
There are various arrangements of this system, but all work on the same principles. Sometimes the
condenser Co is omitted, and the winding Lo is so made that its selfcapacity (or distributed capacity)
is sufficient to cause the resonance and bypassing effects. The coil Lo may also be located at various
points of the secondary, in different designs. There is no rule which can be given. The whole effect
is so complicated that the only way in which to design such a system is to do it experimentally; that
is, use the cutandtry method.
Constructing the Transformer
Figs. 7 and 8 show the construction of such an R.F. transformer. The primary loading inductance Lo
is a randomwound coil of 400 turns of No. 36 D.S.C. wire on a small bobbin, in a slot 3/16inch wide,
and having an inside diameter of 1/2inch. The construction of this bobbin is shown in Fig. 8.
The bobbin is inserted into the top end of the tubing on which the secondary is wound; the latter
winding starting just below the bobbin. At the lower end of the secondary  away from the grid end 
is wound the normal primary L1, upon a laver of empire cloth; this part of the construction is quite
usual. The coil Lo is shunted by a fixed condenser of 40 micromicrofarads (40mmf.) value.
Before closing the discussion, we must include a few words on the antenna coupling, and see how much
voltage stepup we can expect in this tuned circuit. The constants which have been assumed, in making
the calculations for the preceding curves, are those shown in the curves of Fig. 9; which are experimental
values taken on a regular commercial R.F. transformer. In making the calculations for the antenna circuit
the constants shown on the curve were assumed. Two curves are shown; one of these is for a fairly large
coupling and a fairly large antenna; the second is for a smaller antenna and looser coupling. In the
lower curve these values have been reduced, in order to see how much the amplification is lowered. As
these curves show, we can expect the voltage amplification in the antenna coupling transformer to vary
from perhaps unity to as much as 30. This effect also contributes considerably toward making the amplification
characteristic of the entire amplifier quite steep with regard to frequency; and it must be compensated
for by the special transformer primaries.
Selectivity Found in Number of Circuits
Before closing it will be well to include a few remarks about the selectivity to be expected from
such circuits. Fig. 10 shows curves which have been calculated for the two circuits  the interstage
circuit and the antenna circuit. It will be seen that there is not a great difference between the selectivities
of the two circuits, although the antenna circuit is somewhat less sharp in tuning than the interstage
circuit; which we may well expect, considering the resistance of the antenna. In the interstage coupling
the primary resistance (the plate resistance of the tube) is so great that the primary has little effect
on the tuning of the secondary and on its selectivity.
Although these curves may seem to be quite broad, upon first inspection, it must be remembered that
the great selectivity of an amplifier is dependent mainly upon the number of tuned circuits, and not
upon the selectivity of each single circuit. By this we mean that only small improvements in overall
selectivity can be made by improving the selectivity of the individual stage; practical, commercial
tuned circuits are about as selective as we can make them without adding considerably to the cost. Great
improvement in selectivity may be obtained by adding a special tuned circuit to the amplifier; whereas,
a slight improvement in the selectivities of the several tuned circuits (as by reducing their losses),
will hardly result in any improvement that might be considered appreciable.
Posted December 22, 2016 