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Evaluation

This effort was a study to investigate, theoretically
and experimencally, the possibility of Burst Communication
by radio transmission from an antenna buried for conceal-
ment. Low transmitter pover, 1 watt, maximum antenna
width of 5 inches and VHF frequency were major parameters.
The emphasis was on antenna design and not commiunications
system design. The results of the study indicate theoreti-
cally useful ground to airborne communications,

In view of the theoretical and experimental feasibility
indicated, an expansion of the effort is recommended. It
should include further experimentation and flight testing
to expiore the more practical aspects of adapting the
experimental antennas to existing buried transmit devices.
An experimental buried antenna/transmit combination unit
should be constructed for this purpose,
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1. INTRODUCTION

o

3 The cbjective of this effort is to provide engineering
- services to study the feasibility and practicality of low power
S radio frequency transmissions from antennas chat are buried

L just below the surfsce of the earth. Burial is for concealment
S only.

The main purpose is to predict the communications range
: to an assumed receiver from a buried transmitting antenna. In
. doing this the theory of buried antennas. which is available in
E the literature. is outlined; experiments were performed to con-
ﬁ 2 firm the theory; and small resonant antennas for burial were
developed and tested. Construction details are given for some
candidate antennas.

Compromises and trade-offs are described for various types
of antennas, e.g., vertical and horizontal dipcles. The main

TRV

t

|

t

|

| factor in the research is the requirement of a small antenna to
§ allow convenient burial deployment. This requirement was ac-

|

cormplished by the use of rescnant antennas at the assigned fre-

quency, 145 MHz.

The theory of emission from a buried source to the air space
is discussed in section 2. The general properties of resonant

antennas are described in section 3. The effects of burial on
impedance, bandwidth, efficiency, and pattern are described in
section 4, and a series of candidate antennas is described.

Experimental results for the candidates are given in section 5.

The maximum communication range is predicted in section 6.
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2. THEDRETICAL FIELD CALCULATIONS
A. INTRODUCTION

A theoretical discussion of the effect of burial in the
ground on antenna performance consists of three main aspects:
one aspect is the change of the efficiency of the antenna; the
second aspect is the exact field pattern calculation; and the
third aspect is the change in impedance, and especially the change
in the resonant frequency of resonant antennas. The determination
of efficiency of buried antennas by theoretical methods has been
done only for certain antennas, e.g., for a spherical dipole [1].
Theoretical work on efficiency was not done in the present con-
tract. Experimental determinations of efficiency are discussed
in a later section.

The field at a receiving point in the air may be compared
to that from a monopole set on the ground at the place where the
radiation emerges from the buried antenna. This method makes it
clear how much loss arises from the burial. A more rigorous
method is to state the loss relative to an isotropic sourcs.
This method shows the total effect of the burial and the propa-
gation. Both presentations will be used.

B. GAIN PATTERN IN AIR OF A BURIED DIPOLE

The field in the air space is greatly influenced by the
burial. The notation TM and TE waves will be used to denote*
the wave components with horizontal magnetic vector and hori-
zontal elzctric vector respectively. Table 1 indicates some
characteristics of the waves from buried dipoles and from a
reference quarter wavelength monopole set on the earth. The
latter is a useful basis for comparison. It has approximately
-3 dB gain with respect to isotropic at 10° elevation angle.

*Another notation for TM and TE is vertically and horizontally
polarized respectively.
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Dipole antennas, including a small loop which is a magnetic
dipole, are considered almost exclusively. The following nota-
tion will be used:

VED, vertical electric dipole;
VD, vertical magnetic dipole;
HED, herizontal electric dipole;
HMD, horizontal magnetic dipole.

A buried vertical dipole gives a weaker field throughout the
air space than does a buried horizontal dipole, other things
being equal, and the dielectric constant, €', of the ground being
greater than 2, which is almost always the case. This is due to
the cone of emission from the ground into the air space (fig. 1).
For €' = 6 the cone angular radius is 24°. The vertical dipoles
give no emission straight up and at 24° the underground pattern
factor of the dipole is 8 dB weaker than the maximum, which
occurs in the broadside direction.

The buried horizontal dipole sends maximum energy straight
up. The horizontally traveling surface wave is emitted at
24° from maximum of the dipole, for both the TE and TM polari-
zations, causing at most 0.7 dB loss due to the underground
pattern factor of the dipole at 24° from broadside, € being 6.

For any antenna system the field strength decreases at low
elevation angles, as indicated in table 1. At low angles the
buried antenna exhibits an approximately constant loss compared
to an antenna on the surface, see last line of table 1. This
extra loss due to burial is explained in sections C and D below.
The loss is about 30 dB for T wave and 40 dB for TE waves at
1° elevation angle, €' being 6. The TM wave is almost always
stronger than the TE wave and is therefore more useful. Also
it gives a ground wave, useful for nearby on-the-ground
reception.

Power gain is defined in the footnote of table 1.

et i i SR

oL

oy el T At e ‘ﬁ

Aadn

bl




Table 1. Fields of a moncpole, and various dipoles buried in
earth, with dielectric constant = 6 and conductivity = 0.003 S/m,
stated relative to an isotropic emitter. Depth is assumed zero.
The eighth line shews the depth attenuation per meter.

2 in(2)

4 T™/TE Power Gain

) Antenna Character 10° Elevation 1° Elevation 2° Elevation
A/4 monopole ™ v -3 dB A~ -18 dB A~ -14 dB

with A/2 radius
metal ground

g plane
3 Buried VED ™ -21.8 dB -38.7 dB -33.0 dB
_ Buried VMD TE -25.9 dB -46.1 dB -40.2 dB
§ Buried HED ™ -14.6 4B -31.7 dB -26.1 db
v
3 TE -19.0 dB -38.3 dB  ~ -3z.6 dB
Buried HMD T™ -13.8 dB -30.9 dB -25.4 dB
TE -19.8 dB -39.1 dB -33.3 dB
1 meter depth TE,T™™ -2.19 dB -2.20 dB - 2.20 dB
absorption :
]
Buried HED re- ™ -11.6 dB -13.7 dB -12.1 dB j
lative to ;
surface “
monopole ]
!
&
4
| 3
; (a) The power gain of an antenna at any angle is the ratio of 3
| the power density observed to the theoretical power density k
that would have been furnished by an isotropic emitter in 1
free space at the same distance. n
;
4
5
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Figure 1, a. Rays at critical angle; b. divergence.¥ %

¥Long captions for all figures are given in the "List of Figures”. The capiioa
accompanying each figure will usually be abbreviated.
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C.  THEORETICAL DERIVATION OF THE PATTERN GAIN

A convenient summary of buried anteana theory .i5 that of
Hufford [1}. Earlier results include [Z], [3}, [4]. The
Sommerfeld method for a dipoie in a half space is used. The
final results are given below. The notation is as follows:

€g» ¥y are the constitutive parameters of free space.

In the ground ¥ = g, and the complex refractive index,

n, is given by

2

- z ot . . * = ;
n¢ = elleo e' + 1 o/(mso), also ¢ e;/¢g-

o = conductivity, S/m.

= % = Vi Tes
kg = wlugegd ™, 2o = YHy/ey,
kl = nko, Z1 = Zoln,
sin 61 = sin 8/n (complex Snell's law),
pJ
cos 0, = (n2-sin26)#/n,
loss tangent = €'"/eg' = o/(e'eow), w = 27nf.

A ray at the critical angle of incide=wce in the ground, 8.>
emerges horizontally with sin 6 = 1 in the air, figure la, thus

1
sin 8_ = 1/n, cos 0. = (n%-1) /n.

The equations for the far fields in the air at a height
greater than a few wavelengths, due to dipoles buried in a flat
earth (half space), for 1f and TM waves cespectively, are stated
relative to the field of an isotropic emitter in free space as
follows [1]:

P.e/Ef =LC, D Ae

Em/Ef = L Cm D Am
L = 2/(Re n) ,
D =exp (1 ko h(n cos el—cos 0)} l
Ce = cos 8/(n cos 91+cos 8)
Cm = cos 0/(cos 61+n cos 0), (1)

where

. b e ML % . . o e ) -
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A, =0, VED
1
A = -i(3/2)? sin 8., VED (2)
. L
Ae = 1(3/2)“ cos ¢, HED
A, = 1(3/2)*% cos 8, sin 4, HED (3)
A, = in/[n] x (3/2)* sin 6, VMD
=0, VMD (43
o = -in/[nj x (3/2)% cos 6, sin 4. HMD
A, = in/|n| x (3/2)% cos ¢, HMD (5)

¢ = the azimuth angle measured from an axis that
is perpendicular to the horizontal dipcles.

Equations (2) to (5) are equations (7.18), (7.19), (7.23),
and (7.24) of [1]. The p.oduct LCD of equation (1) would be
used for a buried isotropic pvoint source. The factor A repre-
sents the effects of coupling the dipole pattzrn to the angular
cone of emission. The field Ef of an isotropic emitter of power
¥ watts in free space is

Ec = (W Zo/d,TrRz)’/2 V/m, rms

(30 W) %/R. (6)

The range R is measured in meters.

The simplicity and utilit, of Hufford's normalization (to
an isotropic source) should be noted. Many of the theoretical
formulations give the field pattern for a dipole with a speci-
fied current or = specified dipole moment, which leives the reader
with some wori to do, to find the current or moment from the
power. By che presert method [1] from W and R, the E field of
an isotropic source is found from equation (6), assuming 100 per-
cent efficiency. Then one applies the gain pattern of the buried
source, equations (1)-(5), and gecs the predicted field in the air.
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The predicted ground wave is found in the same way using
] equations (18)-(20), secticn E, below.

D.  PHY. .CAL OPTICS OF BURIED ANTENNAS, [9]
It is instructive to try to obtain the transmitted far

field based on physical optics. There are three main steps:
one step is to find the power transmission factor of the inter-

L L

face using plane wave concepts; a second step is to obtain the
change in the spherical wave divergence factor at the interface,

considering the point source aspects; and the third step is to

calculate the absorption in the ground.

The interface transmission coefficient may be found from
Fresnel's equations and conservation of energy. The refrac-
tive index is temporarily assumed to be real, and losses are
added later. The power transmission coefficients for a plane
wave in the dense medium refracted into the vacaum (air) are:

4n cos e1 cos 6

1l = , (7)
(n cos 6,+cos 8)2

Tﬁ ) 4n cos 91 cos O , 3)
*  (cos 8,+n cos 8)?

where e and m denote TE and TM waves respectively. These are
obtained from Fresnel's field equation, section 9.5 of [5].
taking into account changes of the impedance and the area of
a beam at an interface.

Considering the spherical wave from an elementary doublet

as a bundle of rays we find the change in the solid angle due ‘
to refraction into the air space, figure 1. The spherical %
angles are

dQe

il

1 sin 01d61d¢1, in the earth

k! dQ? = sin 0d6d¢, in the air. (9)
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It is true that

49, = do. (10)
From Snell's law
. ) sin 8 = n sin el, (11)
and by differentials
cos 8d6 = n cos eldel. (12)

Using equation (10) and equation (12) in equation (9) we have
dQ = sin Bd¢1 n cos eldellcos 8. (13)

The power per solid angle in the air relative to the
power per solid angle in medium ] is the power gain of the
interface transmitting into the air. Denoting this as plZ,e
for a TE mode wave

P 4n cos 6, cos 6

1
+cos 6)2 sin ad¢1 n cos eldellcos 6

p =
12,6 (n cos 8,

P
sin eld91d¢1

4 cos? 6
P1z,e 7 (n cos 6 +cos 6)% n e
Likewise for the TM case
4 cos? 9
= (15)

P
1z,m (cos 6,+n cos 8)% n

Equations (14) and (15) are identical to (L Ce)2 and (L Cm)2
of equations (1) using a real refractive index. The inclusion

of complex n and 6, requires that the squares be replaced by

1
absolute values squared.
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The pattern factor A of a dipole in the ground includes
Y3772, and sin 61 for vertical dipoles, cos 61 for horizontal
dipoles, end fire, and a sine or cosine of ¢ appears, see
equations (2) to (5).

Finally the attenuation ir the ground may be obtained
approximately from the propagation factor in the ground and
the ray optical distance,

ik.d/cos o!
Dt = ¢ 1 LS (16)

i is a real

angle defined as the direction of a plane wave refracted by the
ground using the velocity in the ground, c/n'. An approximate

where kl = kon is the complex wave number and 6

Snell's law with this assumption is

sin 8] = n'"! sin 0, (17)

where n' is the real part of the complex refractive index of

the ground. The attenuations given by D of equations (1) and

by D' of equation (16) are nearly the same in spite of the
different forms. The attenuation exponent in equation (16)
becomes 1 percent greater than in equations (1) when the loss*
tangent is 0.6. A correct electromagnetic treatment of equation
(16) is given in section 9.8 of reference [5] as well as in [1].

E. GROUND WAVE

The ground wave (6 = 90°) is obtained from a Sommerfeld
type nf theory. Equations (1) are replaced by [1],

Ee/Ef
E /Eg

8,U, DA,/ (-ikyR)
s U DA /(-ikiR), (18)

where R is the horizontal distance to the field point, and
1
2/ ((Re n)* x (n2-1)),
1
S, = 2 n3/((Re n)? x (n%-1)), (19)

*Provided also €' > 5.
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Ue =1 -1 k0 z Z0 cos BC/ZI,

U, =1 - i ko z Z1 cos GC/ZO, (20)
where z is the height of the field point above the intertace;
z is restricted to a few wavelengths. At greater heights the
‘ space wave approximation, equations (1), are used. Equations (18)
E state that the ground wave field decays at 1/R relative to the
reference field Ef which already decays as 1/R, equation (6).
The ground wave is not important when the receiving station is
an aircraft. There is evidence of the ground wave in the field
trials described below. The receiving tower was 30.5 m horizon-
tally from the point of burial. The theoretical loss at low
angles is greater than that observed at low angles. For example,
the gain at 2° elevation angle should be approximately 12 dB less
than the gain at 10° elevation angle. The experiments show ap-
proximately a 6 dB difference. We therefore usually discuss
results at 10° elevation angle. Another evidence of the ground
wave occurs in figure 11, With no ground wave the resuits for
the two reference monopoles would nearly coincide, as in figure
9. The ground wave, stronger at lower frequencies, shows clearly
as a difference in the fields at low angles.

F. CALCULATION OF THE FIELD FROM EQUATIONS (1)

A computer program was written to evaluate the field in

the air of a buried dipole, from equations (1). The important

factor from these equations for low-angle reception is LC which,
ﬁ as we have seen in section 2D, arises from divergence and from

the Fresnel transmission. The power gain due to LC combined

with the broadside power gain of a dipole, 1.5, will be denoted
v as the interface gain, I. However, the term interface loss will
1 also be used for I. Figure 2 shows the TM wave interface loss
in dB, at certain angles, versus €' of the earth. Specifically
the curves give the value in dB of

f I = 1.5[LC|? = 6 cos? 8/(n'|cos 6.+n cos 0]2?).
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