Electronics World articles Popular Electronics articles QST articles Radio & TV News articles Radio-Craft articles Radio-Electronics articles Short Wave Craft articles Wireless World articles Google Search of RF Cafe website Sitemap Electronics Equations Mathematics Equations Equations physics Manufacturers & distributors Engineer Jobs LinkedIn Crosswords Engineering Humor Kirt's Cogitations RF Engineering Quizzes Notable Quotes Calculators Education Engineering Magazine Articles Engineering software RF Cafe Archives RF Cascade Workbook 2018 RF Symbols for Visio - Word Advertising Magazine Sponsor RF Cafe RF Electronics Symbols for Visio RF Electronics Symbols for Office Word RF Electronics Stencils for Visio Sponsor Links Saturday Evening Post NEETS EW Radar Handbook Microwave Museum About RF Cafe Aegis Power Systems Anritsu Alliance Test Equipment Amplifier Solutions Anatech Electronics Axiom Test Equipment Berkeley Nucleonics Bittele Centric RF Conduct RF Copper Mountain Technologies Empower RF everything RF Exodus Advanced Communications Innovative Power Products ISOTEC KR Filters Lotus Systems PCB Directory Rigol RF Superstore San Francisco Circuits Reactel RFCT TotalTemp Technologies Triad RF Systems Windfreak Technologies Withwave LadyBug Technologies Wireless Telecom Group Sponsorship Rates RF Cafe Software Resources Vintage Magazines Thank you for visiting RF Cafe!
Innovative Power Products Couplers

A Variable Wavelength Antenna
January 1935 Short Wave Craft

January 1935 Short Wave Craft

January 1935 Short Wave Craft Cover - RF Cafe[Table of Contents]

Wax nostalgic about and learn from the history of early electronics. See articles from Short Wave Craft, published 1930 - 1936. All copyrights hereby acknowledged.

There are many designs for multiple-wavelength antennas available. Some use resonant 'traps' and specific length sections of lines to change the effective RF length according to specific frequency bands, and others employ complex phasing of multiple antennas to a single-point feed. Doing so allows operation across bands that do not necessarily fall within or close enough to harmonic ratios, while still presenting decent VSWR to the transceiver for acceptable performance. Still, nothing beats a single, finely tuned antenna for each band of operation, or for that matter an antenna whose length is trimmed to operate at peak efficiency even within sub-bands. It is possible to 'match' just about any antenna impedance to a transmission line and transceiver, there will always be loses in efficiency and thus loss in power due to resistive losses in matching networks and transmission lines (where reflected power is dissipated). This arrangement of a continuously variable length wire antenna is one answer to the problem. It takes a bit of mechanical aptitude and a willingness to adjust the length with each frequency change, but after the initial calibration you simply adjust it to marked points. Designing a fully automatic electromechanical version is well within the skill set of many Hams.

A Variable Wavelength Antenna

A Variable Wavelength Antenna, January 1935 Short Wave Craft - RF CafeInteresting details of the construction followed in building a variable wavelength antenna are illustrated above.

In the early days of short-wave reception every amateur dreamed of having efficient tuning condensers which would be smoothly and silently variable; then came the variable grid-leak, volume control, and now variable-mu valves.

This desire to have various features of variable value has caused attention to be directed to the aerial used for short-wave reception, the idea being to have the aerial of such a length that it favors a certain wavelength or band of wavelengths.

The natural wavelength of any aerial depends primarily on its length, and the wavelength (in meters) can be found by multiplying its length in feet by 0.3 and the result by 4. For example, an aerial 50 feet long has a natural wavelength of 50 x 0.3 x 4 = 60 meters, or, if we wish to know what length of wire to use in order to obtain a given natural wavelength, we must multiply the number in meters by 3.3 and divide the result by 4. Thus, if we require an aerial with a natural wavelength of 30 meters, the length of wire required will be (30 x 3.3) / 4 = 24.75 feet or 24 feet 9 inches.

Natural wavelength in meters Length of wire in feet
10 8.25
20 16.50
30 24.75
40 33.00
50 41.25
60 49.50
70 57.75
80 60.00
The following table (obtained by the above method) will give a close idea as to the different aerial lengths required to cover the waveband between 10 and 80 meters, the usual range covered by most dual-range tuning coils for short-wave work:

The free end of the aerial wire is provided with two egg-type insulators, a coiled spring and another insulator, to which is attached the hauling rope or line which passes over the top pulley - fixed to the usual wireless pole at the far end of the garden - down the pole, round the lower pulley and thence back to the house where it is secured, within easy reach.

With the aerial extended to 14 feet - equivalent to a natural wavelength of 16.8 meters by the formulae given - the Empire transmitter for the African zone was picked up at fair loudspeaker strength but subject to fading. Extending the aerial another 9 feet gave a length of 23 feet, corresponding to a natural wavelength of 27.6 meters. The same transmission was tuned in again and found to be louder, with fading not so deep. The volume dropping to a comfortable loudspeaker strength, while the peak strength between fades was much greater than ever obtained before. Experiments on other parts of the waveband have shown that reception is improved by adjusting the length of the aerial. - World Radio.

(In this article the author referring to "natural wavelength" means the greatest wavelength at which a grounded antenna will function. In his meter-to-feet conversion he uses 3.3 as a factor instead of 3.28. These calculations are near enough for "receiving" purposes but will not serve for computing dimensions of transmitting antennas. - Editor)



Posted February 3, 2017

PCB Directory (Manufacturers)
Berkeley Nucleonics Corporation - RF Cafe
RF Cascade Workbook 2018 by RF Cafe

RF Superstore (RF Components) - RF Cafe

Please Support RF Cafe by purchasing my  ridiculously low−priced products, all of which I created.

These Are Available for Free


About RF Cafe

Kirt Blattenberger - RF Cafe Webmaster

Copyright: 1996 - 2024


    Kirt Blattenberger,


RF Cafe began life in 1996 as "RF Tools" in an AOL screen name web space totaling 2 MB. Its primary purpose was to provide me with ready access to commonly needed formulas and reference material while performing my work as an RF system and circuit design engineer. The World Wide Web (Internet) was largely an unknown entity at the time and bandwidth was a scarce commodity. Dial-up modems blazed along at 14.4 kbps while tying up your telephone line, and a nice lady's voice announced "You've Got Mail" when a new message arrived...

All trademarks, copyrights, patents, and other rights of ownership to images and text used on the RF Cafe website are hereby acknowledged.

My Hobby Website: