RIGOL Technologies (test equipment) - RF Cafe
LadyBug Technologies LB5944A RF Power Sensor - RF Cafe

About RF Cafe

Kirt Blattenberger - RF Cafe Webmaster

Copyright: 1996 - 2024
    Kirt Blattenberger,


RF Cafe began life in 1996 as "RF Tools" in an AOL screen name web space totaling 2 MB. Its primary purpose was to provide me with ready access to commonly needed formulas and reference material while performing my work as an RF system and circuit design engineer. The World Wide Web (Internet) was largely an unknown entity at the time and bandwidth was a scarce commodity. Dial-up modems blazed along at 14.4 kbps while tying up your telephone line, and a nice lady's voice announced "You've Got Mail" when a new message arrived...

All trademarks, copyrights, patents, and other rights of ownership to images and text used on the RF Cafe website are hereby acknowledged.

My Hobby Website:


Electronics World articles Popular Electronics articles QST articles Radio & TV News articles Radio-Craft articles Radio-Electronics articles Short Wave Craft articles Wireless World articles Google Search of RF Cafe website Sitemap Electronics Equations Mathematics Equations Equations physics Manufacturers & distributors Engineer Jobs LinkedIn Crosswords Engineering Humor Kirt's Cogitations RF Engineering Quizzes Notable Quotes App Notes Calculators Education Engineering magazine articles Engineering software Engineering smorgasbord RF Cafe Archives RF Cascade Workbook 2018 RF Symbols for Visio - Word Advertising RF Cafe Homepage Thank you for visiting RF Cafe!
Innovative Power Products Resistors

7.5GHz (input) frequency tripler - RF Cafe Forums

RF Cafe Forums closed its virtual doors in 2012 mainly due to other social media platforms dominating public commenting venues. RF Cafe Forums began sometime around August of 2003 and was quite well-attended for many years. By 2010, Facebook and Twitter were overwhelmingly dominating online personal interaction, and RF Cafe Forums activity dropped off precipitously. If the folks at phpBB would release a version with integrated sign-in from the major social media platforms, I would resurrect the RF Cafe Forums, but until then it is probably not worth the effort. Regardless, there are still lots of great posts in the archive that ware worth looking at.

Below are the old forum threads, including responses to the original posts.

-- Amateur Radio
-- Anecdotes, Gripes & Humor
-- Antennas
-- CAE, CAD, & Software
-- Circuits & Components
-- Employment & Interviews
-- Miscellany
-- Swap Shop
-- Systems
-- Test & Measurement
-- Webmaster

Martin H
Post subject: 7.5GHz (input) frequency tripler Posted: Mon Nov 19, 2007 7:17 pm


Joined: Fri Dec 01, 2006 12:03 pm
Posts: 4
Hi all,

I'm wanting to design a frequency tripler: input around 7.5GHz; output 22.5GHz. That's all I know so far. It could be active or passive.

I have no experience of such circuits but have been looking round and reading literature.

Can anyone suggest any kind of circuit that would provide this frequency multiplication?



Post subject: Posted: Tue Nov 20, 2007 4:23 am


Joined: Fri Feb 17, 2006 12:07 pm
Posts: 218
Location: London UK
Hi Martin
In the past I have found HP/Avago Application Notes and the MA-Com design notes very useful.
A varactor diode tripler has four sections:
1) input matching section, since a varactor has an impedance magnitude around 5 ohms
2) bias circuit (optional)
3) shunt idler circuit, a series resonant circuit at 15GHz ie. 2*Fin to circulate a high current at 2*F thru the diode
4) output combined filter to select 3*F and a step-up match to the load.
The efficiency of a tripler will be about 30%
I hope that helps a little.


Martin H
Post subject: Posted: Tue Nov 20, 2007 1:28 pm


Joined: Fri Dec 01, 2006 12:03 pm
Posts: 4
Thanks for that Nubbage.

Solutions I've been looking into have included varactor diodes. Other solutions I've found in the litarature include class C amplifiers and SRDs (the latter I want to avoid for historical reasons).

A passive solution I've just come across is using anti-parallel diode-pairs. This has been used here in the past so is a much lower-risk solution. My only concern is not the conversion loss, but the absolute output power of the 3rd harmonic and whether it can drive the next stage on my circuit. I'll continue to work to enhance the output power in my simulation, whether it be tuning input/output matches or looking at different diodes. Any advice as to which diode parameters may change/enhance the output power of the 3rd harmonic is greatly welcome.



Post subject: Posted: Wed Nov 21, 2007 4:17 am


Joined: Fri Feb 17, 2006 12:07 pm
Posts: 218
Location: London UK
Hi Martin
My experience with step recovery diodes was 35 years ago. We had a lot of problems with instability on start-up, due to device characteristic drift with chip temperature (although we under-ran the devices). We could tune the matching circuit for optimum output spectrum when drive was applied, but ten minutes later the spectrum broke up into something resembling a hedge-hog. The manufacturers eventually came up with elaborate solutions requiring forward bias circuits with a critical temperature coefficient to compensate for the chip temperature drift effects.
Regarding antiparallel diode pairs, I have only read articles on these. My impression was they were mainly suited to even harmonic multipliers. But I may be wrong here.
Class C or even Class D hard-driven MESFETs with a high Q resonator on the output is a promising possible solution. By studying the input-output characteristic curves, or using a software model, it should be possible to estimate the harmonic content without a resonator, for example using Fourier Analysis. Then with a known input to a resonator of known Q it should be possible to compute the transfer efficiency for the third harmonic. Sadly I do not have practical experience with this approach however.

Posted  11/12/2012
TotalTemp Technologies (Thermal Platforms) - RF Cafe
ConductRF Precision RF Test Cables - RF Cafe
Amplifier Solutions Corporation (ASC) - RF Cafe

Please Support RF Cafe by purchasing my  ridiculously low−priced products, all of which I created.

These Are Available for Free