Search RFC: |                                     
Please support my efforts by ADVERTISING!
About | Sitemap | Homepage Archive
Serving a Pleasant Blend of Yesterday, Today, and Tomorrow™
Vintage Magazines
Electronics World
Popular Electronics
Radio & TV News
QST | Pop Science
Popular Mechanics
Radio-Craft
Radio-Electronics
Short Wave Craft
Electronics | OFA
Saturday Eve Post
Please Support My Advertisers!
RF Cafe Sponsors
Aegis Power | Centric RF | RFCT
Alliance Test | Empower RF
Isotec | Reactel | SF Circuits

Formulas & Data

Electronics | RF
Mathematics
Mechanics | Physics


Calvin & Phineas

kmblatt83@aol.com

Resources

Articles, Forums, Radar
Magazines, Museum
Radio Service Data
Software, Videos


Artificial Intelligence

Entertainment

Crosswords, Humor Cogitations, Podcast
Quotes, Quizzes

Parts & Services

1000s of Listings

        Software:

Please Donate
RF Cascade Workbook | RF Symbols for Office
RF Symbols for Visio | RF Stencils for Visio
Espresso Engineering Workbook
Windfreak Technologies Frequency Synthesizers - RF Cafe

Fade margin estimation for spread spectrum systems - RF Cafe Forums

The original RF Cafe Forums were shut down in late 2012 due to maintenance issues - primarily having to spend time purging garbage posts from the board. At some point I might start the RF Cafe Forums again if the phpBB software gets better at filtering spam.

Below are the old forum threads, including responses to the original posts.

-- Amateur Radio
-- Anecdotes, Gripes & Humor
-- Antennas
-- CAE, CAD, & Software
-- Circuits & Components
-- Employment & Interviews
-- Miscellany
-- Swap Shop
-- Systems
-- Test & Measurement
-- Webmaster

guest
Post subject: Fade margin estimation for spread spectrum systems
Unread postPosted: Tue Mar 15, 2005 10:46 pm

I am an RF Engineer, developing Spread Spectrum Radios to be used in Point to multipoint fixed telecommunication systems .

Fading estimation of Signals (unspreaded) in LOS link :
Propagation channel characteristics of our system is very much similar to that of Line-of-sight (LOS) Digital microwave link used in telecommunication systems, where the fading is mainly due to multipath caused by the gradients of atmospheric index of refraction and ground reflections. The Barnett-vignant reliability equation (equation –1) below holds good for estimating fade margins of LOS link where the signal is not spread.

FM = 30 log d +10 log ( 6ABf ) - 10 log ( 1-R ) – 70 ----------------------- ( 1 )

FM= Fade margin in dB
d = Path length in Km
f = Carrier frequency in GHz
A = Rough ness factor
B = Climate factor
R = Reliability

Cannot use Barnett-Vignant reliability equation for spread spectrum system:
Since the signals in our system is spreaded the above equation cannot be used to estimate the fade margins. It is well known that Spread spectrum systems are resistant to multipath fading , but I do not have definite figure by which I can relax from the figures I get using the equation-1. For eg: for one of our links, fade margin when estimated using equation-1, gives a figure of 13 dB , as our system is spread spectrum system 13 dB fade margin is not required but I am not sure by how much I can come down on this figure.

Lookig forward for simple equation /empirical formula:
Hence, I am looking for any simple equation or empirical formula to estimate fade margins for spread spectrum system , similar to the equation-1 . Coming down on the fade margin figures will bring down the cost of our systems but I want to be sure by how much I can relax on the fade margins, so that the performance of the link is not affected .







Posted  11/12/2012
Windfreak Technologies Frequency Synthesizers - RF Cafe