Electronics World articles Popular Electronics articles QST articles Radio & TV News articles Radio-Craft articles Radio-Electronics articles Short Wave Craft articles Wireless World articles Google Search of RF Cafe website Sitemap Electronics Equations Mathematics Equations Equations physics Manufacturers & distributors Engineer Jobs LinkedIn Crosswords Engineering Humor Kirt's Cogitations RF Engineering Quizzes Notable Quotes Calculators Education Engineering Magazine Articles Engineering software RF Cafe Archives RF Cascade Workbook 2018 RF Symbols for Visio - Word Advertising Magazine Sponsor RF Cafe RF Electronics Symbols for Visio RF Electronics Symbols for Office Word RF Electronics Stencils for Visio Sponsor Links Saturday Evening Post NEETS EW Radar Handbook Microwave Museum About RF Cafe Aegis Power Systems Anritsu Alliance Test Equipment Amplifier Solutions Anatech Electronics Axiom Test Equipment Berkeley Nucleonics Bittele Centric RF Conduct RF Copper Mountain Technologies Empower RF everything RF Exodus Advanced Communications Innovative Power Products ISOTEC KR Filters Lotus Systems PCB Directory Rigol RF Superstore San Francisco Circuits Reactel RFCT TotalTemp Technologies Triad RF Systems Windfreak Technologies Withwave LadyBug Technologies Wireless Telecom Group Sponsorship Rates RF Cafe Software Resources Vintage Magazines Thank you for visiting RF Cafe!

E-flite Blade CP R/C Helicopter 4-in-1 Teardown

E-flite Blade CP 4-in-1 case - servo plug-in side

Servo Side

E-flite Blade CP 4-in-1 case - motor plug-in side

Motor Side

E-flite Blade CP 4-in-1 case - crystal plug-in side

Crystal Side

E-flite Blade CP 4-in-1 - PCBs plugged together outside the case

PCBs Plugged Together

Blade CP 4-in-1 case sections

Case Sections

See my other Blade CP page, with in-flight videos, on my AirplanesAndRockets.com website.

E-flite's Blade CP radio controlled electric helicopter comes from the factory with a 4-in-1 electronics unit that contains a 6-channel receiver that performs the functions needed for motor control, piezoelectric gyroscope, BEC (battery eliminator circuit), and ESC (electronics speed control). It also includes a dual-gimbal transmitter with an idle-up switch for transitioning to aerobatic mode where both positive and negative pitch can be commanded to the rotor head.

My Blade CP has always flown well, but from the very beginning it has been prone to sudden, uncommanded control movements (glitches). The results have varied from slight jerkiness in the flight to a sudden high speed climb-outs (really bad when inside).

Online forums have reported the problem, but most attribute the behavior to a "sticky" swash plate. I know without a doubt that my swash plate is very free-moving. I have tried running the helicopter at near full rotor speed and watching for electronic glitches in the controls, but so far have not seen any. The heli has not had any really hard landings, but I did notice that the double-sided tape securing the 4-in-1 to the vertical mounting surface on the main frame had come loose. Replacing it cured much of the jerkiness, but some remains. Just for the heck of it, I decided to open the 4-in-1 and take a look inside for cracked solder joints or damaged components. I did not find any. So, everything was put back together and re-installed in the helicopter. As of this writing, it has not been flown so I cannot report whether the problem is still there, better, or worse.

While the 4-in-1 was apart, I decided to photograph it and try to identify some of the components. There are two, double-sided PCBs that plug into each other via a 6-pin header. The photo to the left shows the two PCBs  removed from the case, but plugged together as they would be in the case. Partitioning of the circuitry appears to have all the RF circuitry on one PCB and the digital processor and high current drivers on the other - good system design to be sure. Four screws hold the case lids on the top and the bottom, with a central case section holding the two PCBs in position, and providing a physical barrier between them. The antenna is captured in a groove between the case sections.

Blade CP 4-in-1 Radio PCB - tuning transformers, crystal socket, 455 kHz filter, 220 uF capacitor, comparator, 8-bit serial-to-parallel

Crystal + Filters

Radio PCB

Blade CP 4-in-1 Radio PCB - microcontroller, voltage regulators, potentiometers, LED

Controller + Drivers

Controller PCB

Blade CP 4-in-1 Radio PCB - receiver + demodulator

Receiver + Demodulator

Radio PCB

Blade CP 4-in-1 Radio PCB - gyroscope, MOSFET drivers, opamp

Gyro + ESC

Controller PCB

One PCB contains the radio circuitry that performs receiver and demodulation functions. On one side (photo to the left) it has two tunable transformers where the antenna enters the circuit - most likely one for the tuning the input and the other for tuning the oscillator. The crystal plugs into the socket between the transformer and the 455 kHz filter. A large (220 uF) capacitor mounts next to the pin header row (where servos plug in). A TI LM393 dual differential comparator sits to the right of the lower transformer. An AHC164 parallel 8-bit serial-in-parallel-out shift register sits below the big capacitor. The reverse side (photo to the right) contains the receiver front-end IC (Toshiba TA31136F FM detector) and a voltage regulator.

The other PCB performs the ESC, BEC and gyroscope functions. The photo to the left shows three International Rectifier 7451H power MOSFET drivers (SOT8 packages) -  two in parallel for the main rotor motor and one for the tail rotor motor - and a muRata GYROSTAR™ JPN ENC-03M Piezoelectric Vibrating Gyroscope (metal case in left photo). An LM324 quad opamp is located below the gyro package in the photo. The reverse side (photo to the right) has an Elan EM78P458AM microcontroller for the 4-in-1, two potentiometers, a clock crystal to the microcontroller, a dual LED for the red/green indicator, and two CX1117-5.0 voltage regulators (mounted side-by-side near bottom edge where battery wires enter PCB).

Thanks to Geoff Schulz for correcting the gyro P/N and pointing out that the cyclic mixing is performed in the transmitter, not the receiver. Geoff has also extensively studied the mechanism that causes the collective pitch to change with rapid yaw inputs and has discovered a design/control system flaw that he has submitted to Horizon Hobby to assist them in correcting the problem. Maybe once the issue is resolved, he will allow his works to be published here.

Thanks to Eric Jorgensen for pointing out that two of the three FETs are in parallel for driving the main rotor motor, and the third drives the tail rotor motor.


Posted May 4, 2020

RF Electronics Shapes, Stencils for Office, Visio by RF Cafe
Innovative Power Products Passive RF Products - RF Cafe
Windfreak Technologies Frequency Synthesizers - RF Cafe
Innovative Power Products Passive RF Products - RF Cafe
Innovative Power Products Passive RF Products - RF Cafe

Please Support RF Cafe by purchasing my  ridiculously low−priced products, all of which I created.

These Are Available for Free


About RF Cafe

Kirt Blattenberger - RF Cafe Webmaster

Copyright: 1996 - 2024


    Kirt Blattenberger,


RF Cafe began life in 1996 as "RF Tools" in an AOL screen name web space totaling 2 MB. Its primary purpose was to provide me with ready access to commonly needed formulas and reference material while performing my work as an RF system and circuit design engineer. The World Wide Web (Internet) was largely an unknown entity at the time and bandwidth was a scarce commodity. Dial-up modems blazed along at 14.4 kbps while tying up your telephone line, and a nice lady's voice announced "You've Got Mail" when a new message arrived...

All trademarks, copyrights, patents, and other rights of ownership to images and text used on the RF Cafe website are hereby acknowledged.

My Hobby Website: