Left Border Content  RF Cafe




Copyright: 1996  2024 Webmaster:
Kirt Blattenberger,
BSEE  KB3UON
RF Cafe began life in 1996 as "RF Tools" in an AOL screen name web space totaling
2 MB. Its primary purpose was to provide me with ready access to commonly needed
formulas and reference material while performing my work as an RF system and circuit
design engineer. The World Wide Web (Internet) was largely an unknown entity at
the time and bandwidth was a scarce commodity. Dialup modems blazed along at 14.4 kbps
while typing up your telephone line, and a nice lady's voice announced "You've Got
Mail" when a new message arrived...
All trademarks, copyrights, patents, and other rights of ownership to images
and text used on the RF Cafe website are hereby acknowledged.
My Hobby Website:
AirplanesAndRockets.com


SubHeader  RF Cafe

Module 1  Introduction to Matter, Energy, and Direct Current Navy
Electricity and Electronics Training Series (NEETS) Chapter 3:
Pages AII1 through AII3 
Module 1  Introduction to Matter, Energy, and Direct Current
Pages i  ix,
11 to 110,
111 to 120,
121 to 130,
141 to 150,
151 to 160,
161 to 165,
21 to 210,
211 to 220,
221 to 229,
31 to 310,
311 to 320,
321 to 330,
331 to 340,
341 to 350,
351 to 360,
361 to 370,
371 to 380,
381 to 390,
391 to 3100,
3101 to 110,
3111 to 3120,
3121 to 3126, Appendix
I,
II,
III,
IV,
V,
Index
APPENDIX II LAWS OF EXPONENTS The International Symbols Committee has adopted prefixes for denoting decimal
multiples of units. The National Bureau of Standards has followed the recommendations of this committee, and has
adopted the following list of prefixes:
Numbers 
Powers of ten 
Prefixes 
Symbols 
1,000,000,000,000 
10^{12} 
tera 
T 
1,000,000,000 
10^{9} 
giga 
G 
1,000,000 
10^{6} 
mega 
M 
1,000 
10^{3} 
kilo 
k 
100 
10^{2} 
hecto 
h 
10 
10 
deka 
da 
.1 
10^{1} 
deci 
d 
.01 
10^{2} 
centi 
c 
.001 
10^{3} 
milli 
m 
.000001 
10^{6} 
micro 
u 
.000000001 
10^{9} 
nano 
n 
.000000000001 
10^{12} 
Pico 
p 
.000000000000001 
10^{15} 
femto 
F 
.000000000000000001 
10^{18} 
atto 
a 
To multiply like (with same base) exponential quantities, add the exponents. In the language of
algebra the rule is a^{m} x a^{n} = a^{m+n}
AII1
To divide exponential quantities, subtract the exponents. In the language of algebra the rule is
*Generally used with electrical quantities.
To raise an exponential quantity to a power, multiply the exponents. In the language of algebra (x^{m})^{n}
= x^{mn}.
Any number (except zero) raised to the zero power is one. In the language of algebra xO = 1
Any base with a negative exponent is equal to 1 divided by the base with an equal positive
exponent. In the language of algebra x^{a} = 1/x^{a}
To raise a product to a power, raise each factor of the product to that power.
AII2
To find the nth root of an exponential quantity, divide the exponent by the index of the root. Thus,
the nth root of am = a^{m/n}.
AII3
NEETS Table of Contents
 Introduction to Matter, Energy,
and Direct Current
 Introduction to Alternating Current and Transformers
 Introduction to Circuit Protection,
Control, and Measurement
 Introduction to Electrical Conductors, Wiring
Techniques, and Schematic Reading
 Introduction to Generators and Motors
 Introduction to Electronic Emission, Tubes,
and Power Supplies
 Introduction to SolidState Devices and
Power Supplies
 Introduction to Amplifiers
 Introduction to WaveGeneration and WaveShaping
Circuits
 Introduction to Wave Propagation, Transmission
Lines, and Antennas
 Microwave Principles
 Modulation Principles
 Introduction to Number Systems and Logic Circuits
 Introduction to Microelectronics
 Principles of Synchros, Servos, and Gyros
 Introduction to Test Equipment
 RadioFrequency Communications Principles
 Radar Principles
 The Technician's Handbook, Master Glossary
 Test Methods and Practices
 Introduction to Digital Computers
 Magnetic Recording
 Introduction to Fiber Optics

Footer  RF Cafe


Right Border Content  RF Cafe
