Welcome to the RF Cafe Website

Search:                 | Sitemap

About RF Cafe | Homepage Archive

Kirt Blattenberger (KB3UON)

Advertise on RF Cafe (Advertisers)

RF Cafe Live Blog | Forums

Copyright 1999-2030

Electronics & RF | Mathematics

Physics & Mechanics | Quotes

Crosswords | Humor | Podcasts

Quizzes | Cogitations | Articles

Parts & Services | Videos

Radar Handbook | Cool Things

Selected Vintage Magazine Articles

Electronics World | Radio-Electronics | OFA

Radio & TV News | QST | Popular Science

Popular Mechanics | Radio-Craft | Electronics

Popular Electronics  | Mechanix Illustrated

Short Wave Craft | Saturday Evening Post

RF & Electronics Symbols for Visio & Office

RF & Electronics Stencils for Visio

RF Cascade Workbook | Espresso Workbook

Rigol DHO1000 Oscilloscope - RF Cafe

Espresso Engineering Workbook - RF Cafe

Anatech Electronics RF Microwave Filters - RF Cafe

Module 8 - Introduction to Amplifiers
Navy Electricity and Electronics Training Series (NEETS)
Chapter 2:  Pages 2-31 through 2-35

Module 8 − Introduction to Amplifiers

Pages i, 1−1, 1−11, 1−21, 1−31, 2−1, 2−11, 2−21, 2−31, 3−1, 3−11, 3−21, 3−31, 3−41, 3−51, 3−61, AI−1, Index

NEETS Modules
- Matter, Energy, and Direct Current
- Alternating Current and Transformers
- Circuit Protection, Control, and Measurement
- Electrical Conductors, Wiring Techniques, and Schematic Reading
- Generators and Motors
- Electronic Emission, Tubes, and Power Supplies
- Solid-State Devices and Power Supplies
- Amplifiers
- Wave-Generation and Wave-Shaping Circuits
- Wave Propagation, Transmission Lines, and Antennas
- Microwave Principles
- Modulation Principles
- Introduction to Number Systems and Logic Circuits
- - Introduction to Microelectronics
- Principles of Synchros, Servos, and Gyros
- Introduction to Test Equipment
- Radio-Frequency Communications Principles
- Radar Principles
- The Technician's Handbook, Master Glossary
- Test Methods and Practices
- Introduction to Digital Computers
- Magnetic Recording
- Introduction to Fiber Optics
Note: Navy Electricity and Electronics Training Series (NEETS) content is U.S. Navy property in the public domain.

Combination Peaking is accomplished by using both series and shunt peaking.

Combination Peaking

Low-Frequency Compensation is accomplished in a video amplifier by the use of a parallel RC circuit in series with the load resistor.

Low-FREQUENCY Compensation


A Radio-Frequency (RF) Amplifier uses Frequency-Determining NetworkS

to provide the required response at a given frequency.

Radio-FREQUENCY (RF) Amplifier

The Frequency-Determining Network in an RF amplifier provides maximum impedance at the desired frequency. It is a parallel LC circuit which is called a Tuned Circuit

FREQUENCY-Determining Network

Transformer Coupling is the most common form of coupling in RF amplifiers. This coupling is accomplished by the use of RF transformers as part of the frequency-determining network for the amplifier.

Transformer Coupling


Adequate Bandpass is accomplished by optimum coupling in the RF transformer or by the use of a SWAMPING Resistor.

Neutralization in an RF amplifier provides feedback (usually positive) to overcome the effects caused by the base-to-collector interelectrode capacitance.


Answers to Questions Q1. Through Q42.

A-1.   The difference between the upper and lower frequency limits of an amplifier.

A-2.   The half-power points of a frequency-response curve. The upper and lower limits of the band f frequencies for which the amplifier is most effective.

A-3.   (A) f2  = 80 kHz, f1  = 30 kHz, BW = 50 kHz (B) f2  = 4 kHz, f1  = 2 kHz, BW = 2 kHz

A-4.   The capacitance and inductance of the circuit and the interelectrode capacitance of the transistor.

A-5.   Negative (degenerative) feedback.

A-6.   It decreases.

A-7.   It increases.

A-8.   The capacitance of the circuit.

A-9.    Peaking coils.

A-10.   The relationship of the components to the output-signal path.

A-11.   Combination peaking.

A-12.   The coupling capacitor (C3).


A-13.   a shunt peaking coil for Q2.

A-14.   a decoupling capacitor for the effects of R2.

A-15.   a part of the low-frequency compensation network for Q1.

A-16.   a series peaking coil for Q1.

A-17.   a swamping resistor for L2.

A-18.   L1, L2, and R5.

A-19.   R9 and C5.

A-20.   The gain increases.

A-21.   The gain decreases.

A-22.   To provide maximum impedance at the desired frequency.

A-23.   Yes.

A-24.   By changing the value.

A-25.   Transformer coupling.

A-26.   It uses fewer components than capacitive coupling and can provide an increase in gain.

A-27.   a step-down transformer.

A-28.   a too-narrow bandpass.

A-29.   By using an optimally-coupled transformer.

A-30.   Low gain at the center frequency.

A-31.   a swamping resistor in parallel with the tuned circuit.

A-32.   RF transformers are used and the transistor is neutralized.

A-33.   Degenerative or negative.

A-34.   By neutralization such as the use of a capacitor to provide regenerative (positive) feedback.

A-35.  C2 and the secondary of T1.

A-36.   R1 provides the proper bias to the base of Q1 from VBB.

A-37.   R2 provides the proper bias to the emitter of Q1.

A-38.   The output would decrease. (C4 decouples R2 preventing degenerative feedback from R2.)

A-39.    C5 and the primary of T2.

A-40.   Four.


A-41.   The dotted lines indicate that these capacitors are "ganged" and are tuned together with a single control.

A-42.   C3 provides neutralization for Q1.


Windfreak Technologies Frequency Synthesizers - RF Cafe

About RF Cafe

Kirt Blattenberger - RF Cafe Webmaster

1996 - 2024


Kirt Blattenberger,


RF Cafe began life in 1996 as "RF Tools" in an AOL screen name web space totaling 2 MB. Its primary purpose was to provide me with ready access to commonly needed formulas and reference material while performing my work as an RF system and circuit design engineer. The World Wide Web (Internet) was largely an unknown entity at the time and bandwidth was a scarce commodity. Dial-up modems blazed along at 14.4 kbps while tying up your telephone line, and a nice lady's voice announced "You've Got Mail" when a new message arrived...

Copyright  1996 - 2026

All trademarks, copyrights, patents, and other rights of ownership to images and text used on the RF Cafe website are hereby acknowledged.

My Hobby Website: AirplanesAndRockets.com | My Daughter's Website: EquineKingdom


Innovative Power Products Passive RF Products - RF Cafe

LadyBug RF Power Sensors