Search RFCafe.com                           
      More Than 18,000 Unique Pages
Please support me by ADVERTISING!
Serving a Pleasant Blend of Yesterday, Today, and Tomorrow™ Please Support My Advertisers!
   Formulas & Data
Electronics | RF
Mathematics
Mechanics | Physics
     AI-Generated
     Technical Data
Pioneers | Society
Companies | Parts
Principles | Assns


 About | Sitemap
Homepage Archive
        Resources
Articles, Forums Calculators, Radar
Magazines, Museum
Radio Service Data
Software, Videos
     Entertainment
Crosswords, Humor Cogitations, Podcast
Quotes, Quizzes
   Parts & Services
1000s of Listings
 Vintage Magazines
Electronics World
Popular Electronics
Radio & TV News
QST | Pop Science
Popular Mechanics
Radio-Craft
Radio-Electronics
Short Wave Craft
Electronics | OFA
Saturday Eve Post

Software: RF Cascade Workbook
RF Stencils Visio | RF Symbols Visio
RF Symbols Office | Cafe Press
Espresso Engineering Workbook

Aegis Power  |  Alliance Test
Centric RF  |  Empower RF
ISOTEC  |  Reactel  |  RFCT
San Fran Circuits

Anritsu Test Equipment - RF Cafe

Innovative Power Products Cool Chip Thermal Dissipation - RF Cafe

ConductRF Phased Matched RF Cables - RF Cafe

Please Support RF Cafe by purchasing my  ridiculously low-priced products, all of which I created.

RF Cascade Workbook for Excel

RF & Electronics Symbols for Visio

RF & Electronics Symbols for Office

RF & Electronics Stencils for Visio

RF Workbench

T-Shirts, Mugs, Cups, Ball Caps, Mouse Pads

These Are Available for Free

Espresso Engineering Workbook™

Smith Chart™ for Excel

Windfreak Technologies Frequency Synthesizers - RF Cafe

Transient (Damped) Responses

In electrical and mechanical Engineering, a transient response or natural response is the reaction of a system to a change from equilibrium (steady state). Over an infinitely long time of being unperturbed, the system again returns to a steady state a either its original state or some new state.

In an electrical system, a simple example of transient response would be the output of a DC power supply when it is turned on. The output voltage is initially 0 V, and sometime after being switched on, settles into some new voltage level. During the transition from 0 V to some new DC voltage level, the output voltage follows some variation of the three waveforms illustrated below. An underdamped supply would allow the output voltage to swing higher than the final voltage (a potentially destructive scenario). Overdamping would cause the output voltage to take an excessively long time to reach the final value. A critically damped system allows the voltage to ramp up as quickly as theoretically possible without ever overshooting the final steady state voltage level. Choosing appropriate values of resistance, inductance, and capacitance allows the response to be tailored to the specific need.

In a mechanical system, a simple example is a mass/spring/damper system. The transient response is the position of the mass as the system returns to equilibrium after an initial force or a non zero initial condition. Think of jumping on the bumper of a car and observing who the car moves when you get off. An over damped system results in it being difficult to even get the car rocking. Under damped results in the car bouncing up and down many cycles after you get off. Critically damped results in a smooth return to the neutral position.

Underdamped, critically damped, overdamped transient response chart graph - RF Cafe

f(t) = A1*es1t + A2*es2t Over Damped - Roots of the characteristic equation are real and unique.
f(t) B1e-at cos (ω t) + B2e-at sin (ω t) Under Damped - Roots of the characteristic equation are complex.
f(t) = D1te-at + D2e-at Critically Damped - Roots of the characteristic equation are equal and real.
Windfreak Technologies Frequency Synthesizers - RF Cafe
RF Cascade Workbook 2018 by RF Cafe

Windfreak Technologies Frequency Synthesizers - RF Cafe

Anatech Electronics RF Microwave Filters - RF Cafe