Search RFC: |                                     
Please support my efforts by ADVERTISING!
About | Sitemap | Homepage Archive
Serving a Pleasant Blend of Yesterday, Today, and Tomorrow™
Vintage Magazines
Electronics World
Popular Electronics
Radio & TV News
QST | Pop Science
Popular Mechanics
Radio-Craft
Radio-Electronics
Short Wave Craft
Electronics | OFA
Saturday Eve Post
Alliance Test | Isotec
Please Support My Advertisers!
RF Cafe Sponsors
Aegis Power | Centric RF | RFCT
Empwr RF | Reactel | SF Circuits

Formulas & Data

Electronics | RF
Mathematics
Mechanics | Physics


Calvin & Phineas

kmblatt83@aol.com

Resources

Articles, Forums, Radar
Magazines, Museum
Radio Service Data
Software, Videos


Artificial Intelligence

Entertainment

Crosswords, Humor Cogitations, Podcast
Quotes, Quizzes

Parts & Services

1000s of Listings

        Software:

Please Donate
RF Cascade Workbook | RF Symbols for Office
RF Symbols for Visio | RF Stencils for Visio
Espresso Engineering Workbook
Werbel Microwave power dividers, couplers - RF Cafe

Transcat | Axiom Rental Equipment - RF Cafe

Please Support RF Cafe by purchasing my  ridiculously low-priced products, all of which I created.

RF Cascade Workbook for Excel

RF & Electronics Symbols for Visio

RF & Electronics Symbols for Office

RF & Electronics Stencils for Visio

RF Workbench

T-Shirts, Mugs, Cups, Ball Caps, Mouse Pads

These Are Available for Free

Espresso Engineering Workbook™

Smith Chart™ for Excel

Johanson Technology Hi-Q Porcelain Capacitors - RF Cafe

Norton Equivalent Circuit Theorem

Norton's theorem for electrical networks states that any collection of voltage sources, current sources, and resistors with two terminals is electrically equivalent to an ideal current source, I, in parallel with a single resistor, R. For single-frequency AC systems the theorem can also be applied to general impedances, not just resistors. The Norton equivalent is used to represent any network of linear sources and impedances, at a given frequency. The circuit consists of an ideal current source in parallel with an ideal impedance (or resistor for non-reactive circuits). - Wikipedia

The Norton Equivalent of a circuit consists of a Norton current source in parallel with a Norton resistor and is valid for any load. In AC circuits a Norton equivalent circuit is valid for a single frequency.

The Norton current is the short-circuit current at the output - the same as what is calculated for the Thévénin short-circuit current (see Thévénin Equivalent page).

The Norton resistance is the same as the Thévénin resistance.

Original Circuit

Norton Equivalent circuit - RF Cafe

Norton Equivalent Circuit

Norton Equivalent drawing - RF Cafe

 
Johanson Technology Hi-Q Porcelain Capacitors - RF Cafe


Werbel Microwave power dividers, couplers - RF Cafe

Maury Microwave / Noisecom UFX7000B Noise Generator - RF Cafe