Search RFCafe.com                           
      More Than 18,000 Unique Pages
Please support my efforts by ADVERTISING!
Serving a Pleasant Blend of Yesterday, Today, and Tomorrow™
Vintage Magazines
Electronics World
Popular Electronics
Radio & TV News
QST | Pop Science
Popular Mechanics
Radio-Craft
Radio-Electronics
Short Wave Craft
Electronics | OFA
Saturday Eve Post
Please Support My Advertisers!
 
  Formulas & Data
Electronics | RF
Mathematics
Mechanics | Physics
 About | Sitemap
Homepage Archive
        Resources
Articles, Forums Calculators, Radar
Magazines, Museum
Radio Service Data
Software, Videos
     Entertainment
Crosswords, Humor Cogitations, Podcast
Quotes, Quizzes
   Parts & Services
1000s of Listings
Software: RF Cascade Workbook | Espresso Engineering Workbook
RF Stencils for Visio | RF Symbols for Visio
RF Symbols for Office | Cafe Press
Aegis Power | Alliance Test | Centric RF | Empower RF | ISOTEC | Reactel | RFCT | San Fran Circuits
Windfreak Technologies Frequency Synthesizers - RF Cafe

RF Electronics Shapes, Stencils for Office, Visio by RF Cafe

Please Support RF Cafe by purchasing my  ridiculously low-priced products, all of which I created.

RF Cascade Workbook for Excel

RF & Electronics Symbols for Visio

RF & Electronics Symbols for Office

RF & Electronics Stencils for Visio

RF Workbench

T-Shirts, Mugs, Cups, Ball Caps, Mouse Pads

These Are Available for Free

Espresso Engineering Workbook™

Smith Chart™ for Excel

Holzsworth

Skin Depth (aka Skin Effect)
as a Function of Frequency, Permeability, & Conductivity

Skin Depth Chart (silver, copper, gold, aluminum, iron, tin) - RF CafeSkin Depth of round wire - RF CafeAs frequencies increase, conduction begins to move from an equal distribution through the conductor cross section toward existence almost exclusively near the surface. Depending on the conductor bulk resistivity (δs), at sufficiently high frequency all the RF current is flowing within a very small thickness at the surface. Furthermore, the current concentrates nearest to the surface that abuts the highest relative dielectric constant. Lower bulk resistivities result in shallower skin depths.

Skin Depth of microstrip - RF CafeIn the case of a microstrip layout (to the left), the current concentrates nearest to the substrate dielectric material, although current does also concentrate at the other surfaces as well (redder regions). For a solid wire (to the left), the current concentrates on the outer surface. For this reason, when skin depth is shallow, the solid conductor can be replaced with a hollow tube with no perceivable loss of performance. Choice of a plating material can degrade performance (increase attenuation) if its bulk resistivity is greater than that of the copper.

Most common conductors have a relative permeability of very near 1, so for copper, aluminum, etc., a µ value of 4π* 10-7 H/m can safely be assumed. Magnetic materials like iron, cobalt, nickel, mumetals, and permalloy can have relative permeabilities of hundreds or thousands.

The equation for calculating the skin depth is given here:

          (click here table of calculated values)             (click here for the skin depth calculator)

Skin depth equation formula

µ = permeability (4π* 10-7 H/m),  note: H = henries = Ω*s

π = pi

δs = skin depth (m)

ρ = resistivity (Ω*m)

ω = radian frequency = 2π*f (Hz)

σ = conductivity (mho/m),  note: mho [Electrical 'mho' symbol - RF Cafe] = Siemen [S]

Example: Copper @ 10 GHz (ρCu=1.69*10-8 Ωm)

Formula copper skin depth - RF Cafe

Holzsworth
TotalTemp Technologies (Thermal Platforms) - RF Cafe

Innovative Power Products Passive RF Products - RF Cafe

Amplifier Solutions Corporation (ASC) - RF Cafe