Search RFC: |                                     
Please support my efforts by ADVERTISING!
About | Sitemap | Homepage Archive
Serving a Pleasant Blend of Yesterday, Today, and Tomorrow™
Vintage Magazines
Electronics World
Popular Electronics
Radio & TV News
QST | Pop Science
Popular Mechanics
Radio-Craft
Radio-Electronics
Short Wave Craft
Electronics | OFA
Saturday Eve Post
Alliance Test | Isotec
Please Support My Advertisers!
RF Cafe Sponsors
Aegis Power | Centric RF | RFCT
Empwr RF | Reactel | SF Circuits

Formulas & Data

Electronics | RF
Mathematics
Mechanics | Physics


Calvin & Phineas

kmblatt83@aol.com

Resources

Articles, Forums, Radar
Magazines, Museum
Radio Service Data
Software, Videos


Artificial Intelligence

Entertainment

Crosswords, Humor Cogitations, Podcast
Quotes, Quizzes

Parts & Services

1000s of Listings

        Software:

Please Donate
RF Cascade Workbook | RF Symbols for Office
RF Symbols for Visio | RF Stencils for Visio
Espresso Engineering Workbook
RF Cascade Workbook - RF Cafe

Arrhenius Lifetime Acceleration of an Integrated Circuit

The Arrhenius equation predicts failure acceleration rate due to temperature increase. Although originally developed to describe chemical reactions due to temperature, it applies equally well to electronic assembly failure rates. The Arrhenius activation energy, ΔH, is all that is needed to calculate temperature-related acceleration.

Swedish chemist Svante Arrhenius provided a physical justification and interpretation for his observation back in 1899. His equation can be used to model the temperature-variance of diffusion coefficients, population of crystal vacancies, creep rates, and many other thermally-induced processes/reactions. A useful generalization borne out by the Arrhenius equation is that for many common chemical reactions at room temperature, the reaction rate doubles for every 10 °C increase in temperature.

Arrhenius Model for Integrated Circuits
 
F = x1
x2
= eα {Lifetime Acceleration Factor}
Where: x1 = Failure rate at junction temperature T1

x2 = Failure rate at junction temperature T2

T = Junction temperature in degrees K

ΔH = Thermal activation energy in eV

k = Boltzmann's constant

Arrhenius Model for Integrated Circuits

RF Cascade Workbook - RF Cafe
Anritsu MA25211A P25 Radio Auto Test & Alignment System - RF Cafe



Windfreak Technologies Frequency Synthesizers - RF Cafe