Search RFCafe.com                           
      More Than 17,000 Unique Pages
Please support me by ADVERTISING!
Serving a Pleasant Blend of Yesterday, Today, and Tomorrow™ Please Support My Advertisers!
   Formulas & Data
Electronics | RF
Mathematics
Mechanics | Physics
     AI-Generated
     Technical Data
Pioneers | Society
Companies | Parts
Principles | Assns


 About | Sitemap
Homepage Archive
        Resources
Articles, Forums Calculators, Radar
Magazines, Museum
Radio Service Data
Software, Videos
     Entertainment
Crosswords, Humor Cogitations, Podcast
Quotes, Quizzes
   Parts & Services
1000s of Listings
 Vintage Magazines
Electronics World
Popular Electronics
Radio & TV News
QST | Pop Science
Popular Mechanics
Radio-Craft
Radio-Electronics
Short Wave Craft
Electronics | OFA
Saturday Eve Post

Software: RF Cascade Workbook
RF Stencils Visio | RF Symbols Visio
RF Symbols Office | Cafe Press
Espresso Engineering Workbook

Aegis Power  |  Alliance Test
Centric RF  |  Empower RF
ISOTEC  |  Reactel  |  RFCT
San Fran Circuits

TotalTemp Technologies (Thermal Platforms) - RF Cafe

Innovative Power Products Cool Chip Thermal Dissipation - RF Cafe

Anatech Electronics RF Microwave Filters - RF Cafe

Please Support RF Cafe by purchasing my  ridiculously low-priced products, all of which I created.

RF Cascade Workbook for Excel

RF & Electronics Symbols for Visio

RF & Electronics Symbols for Office

RF & Electronics Stencils for Visio

RF Workbench

T-Shirts, Mugs, Cups, Ball Caps, Mouse Pads

These Are Available for Free

Espresso Engineering Workbook™

Smith Chart™ for Excel

Copper Mountain Technologies (VNA) - RF Cafe

Shorthand Circuit Symbols
August 1947 QST

August 1947 QST

August 1947 QST  Cover - RF CafeTable of Contents

Wax nostalgic about and learn from the history of early electronics. See articles from QST, published December 1915 - present (visit ARRL for info). All copyrights hereby acknowledged.

IEEE Standard Logic Symbols: Distinctive vs. Ractangular Shapes - RF CafeThere is something about these proposed shorthand circuit symbols that reminds me of the IEEE digital logic symbols using the distinctive shape (the traditional format) versus the newer rectangular shape format (examples shown to the left). The set is quite extensive when all the different flavors of combinatorial blocks - flip-flops, timers, counters, shift registers, encoders, decoders, etc. - are included. My personal preference, you might guess, is the original format with distinctive shapes. Although I do not do a lot of digital work, it is easier for me to follow the signal flow and mentally perform the logic operations with the distinctive shapes. But I digress. This article from a 1947 issue of QST magazine introduces shorthand versions of analog schematic symbols. I only need to go to the basic resistor, inductor, and capacitor symbols to develop a bias against them. They do not seem to have been adopted widely by the electronics community because I have seen a lot of schematics over the years and do not recall ever seeing these used. However, it is worth posting them here for the public to find in case someone out there does discover their use and wonders what the heck is going on. Maybe you need to cut your teeth on the new symbols to like them ... or be a lot more open to change than I am ;-)

Shameless sales pitch: I have custom sets of schematic symbols available for both Visio and Word.

Shorthand Circuit Symbols

Special forms are easily derived from the basic symbols - RF Cafe

Fig. 2 - Special forms are easily derived from the basic symbols of Fig. 1.

The March, 1947, issue of Britain's Wireless World carries a story entitled "Shorthand Circuit Symbols," by A. W. Keen, that presents enough new ideas in representing radio circuits to be of interest to all who deal with the beasties.

Although Mr. Keen points out that his "shorthand" method was developed only as a faster technique for circuit representation and not as a replacement, there is much to recommend it for general use. You can be the judge.

As Mr. Keen points out, there are four common components that must be represented in radio circuits: resistance, inductance, capacity and vacuum tubes. These are the ones, therefore, that should be simplified, since they occur so frequently. The first three basic circuit elements are simplified by reducing the present symbols to a bare minimum, as shown in Fig. 1. That this "shorthand" presentation lacks nothing in flexibility can be seen in Fig. 2, where various special forms of the basic components are represented. Further, when these symbols are combined, they still suffer nothing in clarity and certainly gain in simplicity, as is obvious from Fig. 3.

Symbols for 'shorthand' circuit representation - RF Cafe

Fig. 1- Simplified symbols for "shorthand" circuit representation.

Combinations of the basic components - RF Cafe

Fig. 3 - Combinations of the basic components are a simple matter, and they take less time to draw than the more conventional representations.

Shorthand vacuum-tube symbols are based on the use of polygons - RF Cafe

Fig. 4 - The "shorthand" vacuum-tube symbols are based on the use of polygons whose sides equal the number of elements in the tube. Combination tubes with common cathodes are easily represented.

Mr. Keen's symbol for a vacuum tube is quite ingenious. He points out that following the various grids in multigrid tubes is an unpleasant process prone to error, and that one must count the grids carefully before deciding what type of tube is being represented. To eliminate all this, he represents a triode by a triangle, a tetrode by a square, a pentode by a pentagon, and so on, as in Fig. 4. The side of the polygon representing the cathode is made distinctive by superimposing a small heater (resistance). The other elements of the tube then follow logically in a clockwise direction around the figure, each element being represented by a side of the polygon.

Tubes like triode-pentodes and the like are represented by surrounding the triode with the pentode and using the common cathode as the common side of the figure.

Circuits represented by the "shorthand" method - RF Cafe

Fig. 5 - Familiar circuits represented by the "shorthand" method.

Several other interesting points were developed in the "shorthand" system. Because the symbols are small, the average wiring diagram is opened out and there are not many "crossover" points. To avoid the "loop" used in QST diagrams, or the dot-no-dot system adopted during the war - which often leads to confusion and error - the "shorthand" method separates a four-wire junction into two separate junctions, and hence any normal crossover of lines represents no connection. This makes for very simple construction and considerably less chance of error. Chassis grounds, the usual common return, are represented by a small "C" superimposed on the end of the wire, resulting in what looks like a bird's claw, or the letter "E" (for "earth").

A few sample diagrams are shown in Fig. 5. - B. G.

Copper Mountain Technologies (VNA) - RF Cafe
Anritsu Test Equipment - RF Cafe

Rigol DHO1000 Oscilloscope - RF Cafe

withwave microwave devices - RF Cafe