Formulas & Data:
- Electronics
- Mathematics
- Physics
- RF & Microwaves

Parts Vendors:
- all hand-selected

- Amateur Radio
- Vintage Articles:
- Electronics World
- Popular Electronics
- QST
- Radio & TV News
- Radio Craft
- Short Wave Craft
- Wireless World

- Events Calendar
RF Cafe Homepage
Copyright 1999-2015   •−•  ••−•    −•−•  •−  ••−•  •   "RF Cafe" in Morse Code  >> Listen to It <<
- EW & Radar Handbook
- Quizzes       - Software
- App Notes
- Calculators
- Advertise on RF Cafe
- About RF Cafe™
- RF Cafe Shirts & Mugs
- RF Cafe Archives
RF Cafe Book Contest
- RF Cafe on Visit RF Cafe on Facebook Visit RF Cafe on Twitter Visit RF Cafe on LinkedIn
- Tech Humor
- Forums Archive
- Job Board
- Donate to RF Cafe
- Kirt's Cogitations
Custom Search
More than 10,000 searchable pages indexed.
Greetings: There is so much good stuff on RF Cafe that there is no way to list or link to all of it here. Please use the Search box or the Site Map to find what you want - there is a good chance I have it. Thanks!

Derivation of Phase Angle Error Due to VSWR Mismatch
by Haris Tabakovic

Try finding the equation for phase angle error due to VSWR mismatch, and you will likely fail. Extensive keyword searches for related terms will turn up websites that present the formula for amplitude error due to VSWR mismatch, but not for phase angle error due to VSWR mismatch. If you are fortunate enough to find the equation, you almost certainly will not be given the derivation.
The actual equation, εθmax = |Γ1 | |Γ2|, is so simple that it seems unbelievable, but here its validity is demonstrated.

Well, the search is over thanks to Haris Tabakovic, who was kind enough to provide this excellent derivation for the benefit of RF Cafe visitors.
 

Here is an online VSWR mismatch calculator.

 

Phase error due to VSWR mismatch


V1 = Vi • T1
V2 = Vi • T1 • e-jβl
Vo = Vi • T1 • T2• e-jβl
Vo is expected output signal.

At the same time, the reflected signal is being bounced around on the connecting transmission line. First order reflections are going to be dominant, and higher order reflections are not taken into account. Note that the transmission line is assumed to be lossless.
Then we can express reflected signal at V2 as:
V2r = Vi • T1 • e-jβlΓ2
This signal travels back and reflects again at V1 :
V1r = V2r • e-jβlΓ1 = Vi • T1 • e-jβlΓ2 • e-jβl • Γ1
Finally, this error signal Voe is transmitted and superimposed on expected output signal, causing phase and amplitude error:
Voe = V1r • e-jβl • T2 = Vi • T1• e-jβlΓ2 • e-jβlΓ1 • e-jβl • T2
Voe = Vi • T1 • T2Γ1Γ2 • e-j3βl
We can represent these signals in complex plane as:
|Vo| = |Vi||T1||T2|
|Voe| = |Vi||T1||T2||Γ1||Γ2|
Phase error due to VSWR mismatch

It follows that we can write the worst-case phase error εθmax as:

Since εθmax will be a very small angle, can say that:
tg(εθmax) εθmax
Finally, we can write the worst-case phase error (in radians) due to reflections at the source and at the load as:
εθmax = |Γ1| |Γ2|

Your RF Cafe
Progenitor & Webmaster

Click here to read about RF CafeKirt Blattenberger… single-handedly redefining what an engineering website should be.

View the YouTube RF Cafe Intro Video Carpe Diem!
(Seize the Day!)

5th MOB: My USAF radar shop

Airplanes and Rockets: My personal hobby website

Equine Kingdom: My daughter Sally's horse riding website