Electronics World articles Popular Electronics articles QST articles Radio & TV News articles Radio-Craft articles Radio-Electronics articles Short Wave Craft articles Wireless World articles Google Search of RF Cafe website Sitemap Electronics Equations Mathematics Equations Equations physics Manufacturers & distributors Engineer Jobs LinkedIn Crosswords Engineering Humor Kirt's Cogitations Engineering Event Calendar RF Engineering Quizzes USAF radar shop Notable Quotes App Notes Calculators Education Engineering Magazines RF Cafe Software,T-Shirts,Coffee Mugs Engineering magazine articles Engineering software Engineering smorgasbord RF Cafe Archives RF Cascade Workbook 2018 RF Stencils for Visio RF & EE Shapes for Word Advertising RF Cafe Homepage Sudoku puzzles Test notes Thank you for visiting RF Cafe!
RF Stencils for Visio v3.1 by RF Cafe

VSWR Mismatch Errors

VSWR Mismatch Errors - RF CafeBoth amplitude and phase errors are introduced when mismatched impedances are present at an electrical interface. When an ideal match is not encountered by the incident (forward) wave, part of it is coupled to the load and part is reflected back to the source. Upon arriving back at the source, part of the reflected wave is coupled back to the source and the rest is reflected back again to the load. The process iterates until the amplitude of the wave is attenuated to an insignificant level due to the loss of the interface (cable, connector, waveguide, etc.). Each time a reverse and forward reflection occurs, the amplitude and phase of all the signal components traversing the path between the source and the load add vectorially. The result is ripple across the frequency band (since the VSWR of each interface typically varies with frequency), as well as a portion of the incident power being reflected back to the source. What begins as a pure sinewave can look like a real mess when viewed on an oscilloscope.

 

Amplitude Error

Note: Only enter values in the yellow cells or risk overwriting formulas!

εA = +20 * log (1 + |ΓA * ΓB|)  [dB]

        -20 * log (1 - |ΓA * ΓB|)  [dB]

Phase Error

εΦ = ±(180 / π) *| ΓA| * |ΓB|  [°]

Note: This formula has also been seen
            written as

εΦ= ±(180 / π) * sin-1 (|ΓA| * |ΓB|)  [°]

  but for small angles, the difference
  is negligible.

See a derivation of this equation as provided by Haris Tabakovic

Resultant MIN and MAX
Cascaded VSWR

VSWRMAX = SA * SB
VSWRMIN = SA / SB

 

where

SA = larger of the two VSWRs
SB = smaller of the two VSWRs

Example

VSWRA = 2.5:1  -->  SA = 2.5
VSWRB = 2.0:1  -->  SB = 2.0
VSWRMAX = 2.5 * 2.0 = 5.0  = 5.0:1
VSWRMIN = 2.5 / 2.0 = 1.25  = 1.25:1

Here is a JavaScript calculator for VSWR / Return Loss / Reflection Coefficient / Mismatch Error / Improvement

Triad RF Systems Rohde & Schwarz FPC1500 Spectrum Analyzer - RF Cafe
QuinStar - RF Cafe Axiom Test Equipment - RF Cafe
About RF Cafe
Kirt Blattenberger - RF Cafe Webmaster
Copyright: 1996 - 2018
Webmaster:
    Kirt Blattenberger,
    BSEE - KB3UON

RF Cafe began life in 1996 as "RF Tools" in an AOL screen name web space totaling 2 MB. Its primary purpose was to provide me with ready access to commonly needed formulas and reference material while performing my work as an RF system and circuit design engineer. The Internet was still largely an unknown entity at the time and not much was available in the form of WYSIWYG ...

All trademarks, copyrights, patents, and other rights of ownership to images and text used on the RF Cafe website are hereby acknowledged.

My Hobby Website:  AirplanesAndRockets.com

spacer