- |
Matter, Energy,
and Direct Current |
- |
Alternating Current and Transformers |
- |
Circuit Protection, Control, and Measurement |
- |
Electrical Conductors, Wiring Techniques,
and Schematic Reading |
- |
Generators and Motors |
- |
Electronic Emission, Tubes, and Power Supplies |
- |
Solid-State Devices and Power Supplies |
- |
Amplifiers |
- |
Wave-Generation and Wave-Shaping Circuits |
- |
Wave Propagation, Transmission Lines, and
Antennas |
- |
Microwave Principles |
- |
Modulation Principles |
- |
Introduction to Number Systems and Logic Circuits |
- |
- Introduction to Microelectronics |
- |
Principles of Synchros, Servos, and Gyros |
- |
Introduction to Test Equipment |
- |
Radio-Frequency Communications Principles |
- |
Radar Principles |
- |
The Technician's Handbook, Master Glossary |
- |
Test Methods and Practices |
- |
Introduction to Digital Computers |
- |
Magnetic Recording |
- |
Introduction to Fiber Optics |
Note: Navy Electricity and Electronics Training
Series (NEETS) content is U.S. Navy property in the public domain. |
NEETS Module 17 - Radio-Frequency Communications Principles
Pages i,
1-1,
1-11,
2-1,
2-11,
2-21,
2-31,
3-1,
3-11,
3-21,
3-31,
3-41,
4-1- to 4-10,
4-11,
5-1,
5-11, Index
Figure 3-10. - Typical radio receivers
Q8. What are the transmitter operating modes?
Q9. What type of tuning does the receiver use?
Antenna DIsTRIBUTION Systems
Receiving antenna distribution systems operate at low power levels and are built
to fit a standard 19- inch rack. Each piece of distribution equipment is fitted
with termination or patch fittings designed for ease of connecting and disconnecting.
a basic patch panel is shown in figure 3-11. Even a fundamental distribution system
has several antenna transmission lines and several receivers. Normally a patch panel
consists of two basic patch panels. One panel is used to terminate the antenna transmission
lines and the other the lines leading to the receivers. Any antenna can be patched
to any receiver through the use of patch cords.
Figure 3-11. - Basic RF receive patch panel.
Many distribution systems are more complex. a complex distribution system to
cover most situations is illustrated in figure 3-12. In this system you can patch
four antennas to four receivers, or you can patch one antenna to more than one receiver
via the multicouplers (multicouplers are covered later in
3-11
this chapter). You can also patch RF and audio from one compartment to another.
a frequency standard is connected (through a distribution amplifier not shown) to
the receivers.
Figure 3-12. - Complex distribution system.
Transmitting antenna distribution systems perform the same functions as receiving
systems. However, because of the higher power levels, design and fabrication problems
are more difficult. The ideal design would be to have all the transmission lines
designed for the highest power level. But because high-power patch cords are expensive,
large, and difficult to handle, this approach is seldom followed.
In practice, the basic patch panel we just looked at in figure 3-11 is practical
for low power levels. Another type of transmitter patch panel is shown in figure
3-13.
3-12
Figure 3-13. - Transmitting antenna patch panel.
This type of transmitting antenna patch panel is interlocked with the transmitter
so that no open jack connection can be energized and no energized patch cord can
be removed. This provides you with a greater degree of personnel and equipment safety.
Receive Multicoupler
Figure 3-14 is a filter assembly multicoupler that provides seven radio frequency
channels in the 14- kilohertz to 32-megahertz range. Any or all of these channels
may be used independently of any of the other channels, or they may operate simultaneously.
You can make connections to the receiver by means of coaxial patch cords, which
are short lengths of cable with plugs attached to each end.
Figure 3-14. - Electrical filter assembly.
3-13
A set of nine plug-in type filter assemblies is furnished with the equipment
and covers the entire vlf, lf, mf, and HF bands. Only seven of the assemblies may
be installed at one time, and you have the option of selecting those you need to
cover the most used frequency bands.
Figure 3-12 illustrates how the filter assembly is used in combination with other
units to pass an RF signal from an antenna to one or more receivers.
Transmit Multicouplers
Most multicouplers for the HF range are designed for use with either transmitters
or receivers, although some are used with both. There are a large number of channels
in a multicoupler so that many transmitters can be used at the same time on one
antenna. This is especially true in the 2- to 12-megahertz range.
Figure 3-15 shows you an antenna coupler group designed primarily for shipboard use. Each coupler group permits several transmitters to operate simultaneously into
a single, associated, broadband antenna. You can see this reduces the total number
of antennas required in the limited space aboard ship.
Figure 3-15. - Antenna coupler group.
3-14
These antenna coupler groups provide a coupling path of prescribed efficiency
between each transmitter and its associated antenna. They also provide isolation
between transmitters, tunable bandpass filters, and matching networks.
TELETYPEWRITER and FACSIMILE Equipment
In previous areas we have discussed different methods of voice communications.
At times, however, the message is too long for practical transmission by voice.
To get information or an idea across to another person far away, you may also need
a chart, map, or photograph. Teletypewriter (TTY) and facsimile equipment allow
us to do just that, with ease. Let's see how this is done.
Basic Principles
To give you an idea of how intelligence is sent via teletypewriter, let's take
a look at the manual telegraph circuit. This circuit, shown in figure 3-16, includes
a telegraph key, a source of power (battery), a sounder, and a movable sounder armature.
If the key is closed, current flows through the circuit and the armature is attracted
to the sounder by magnetism. When the key is opened, the armature is retracted by
a spring. With these two electrical conditions of the circuit, intelligence can
be transmitted by means of a teletypewriter code. These two conditions of the circuit
are referred to as MARKING and SPACING. The marking condition occurs when the circuit
is closed and a current flows; the spacing condition occurs when it is open and
no current flows.
Figure 3-16. - Manual telegraph circuit.
If the key at station a is replaced by a transmitting teletypewriter and the
sounder arrangement at station B is replaced by a receiving teletypewriter, the
basic teletypewriter circuit (loop) shown in figure 3-17 is formed.
3-15
Figure 3-17. - Simple teletypewriter circuit.
If a teletypewriter signal could be drawn on paper, it would resemble figure
3-18. This is the code combination for the letter R. Shaded areas show intervals
during which the circuit is closed, and the blank areas show the intervals during
which the circuit is open. The signal has a total of seven units. Five of these
are numbered and are called INTELLIGENCE units. The first and last units of the
signal are labeled START and STOP. They are named after their functions: the first
starts the signal, and the last stops it. These are a part of every teletypewriter
code signal: the START unit is always spacing, and the STOP unit is always marking.
Figure 3-18. - Mark and space signals.
The teletypewriter signal is theoretically a perfect signal. The time between
each unit remains the same during transmission of the signal. The shift from mark
to space (and vice versa) is called a TRANSITION. a transition occurs at the beginning
and end of each unit when it shifts from mark to space or space to mark; a character
may have two, four, or six transitions.
When figuring the time duration of a signal character, no allowance for transition
time is made since the transition is instantaneous and is considered to have zero
time duration. The time duration for each unit is measured in milliseconds.
Q10. What is the function of an antenna patch panel? Q11.
What are the functions of a multicoupler?
Q12. What are the terms used to describe an open or closed telegraph
circuit?
Q13. How many units are in a TTY signal and what are they?
3-16
Codes
Two of the codes the Navy uses are found in manual telegraphy and in teletypewriter
operation. One is very easy to understand while the other is more complex. Let's
look at these two types and how they work.
MANUAL TELEGRAPHY. - In manual telegraphy, the most widely used
code is the Morse code. In this code, two distinctive signal elements are employed-the
dot and the dash. The difference between a dot and a dash is its duration, a dash
being three times as long as a dot. Each character is made up of a number of dots
and/or dashes. The dot and dash elements making up any character are separated from
each other by a time interval equal to the duration of one dot. The time interval
between the characters for each word is equal to the duration of three dots. The
interval between words is equal to seven dots. (A signal-man uses the Morse code
to send visual flashing-light messages. The radioman uses the Morse code to send
messages electrically.)
TELETYPEWRITER MESSAGE Transmission. - In teletypewriter operation,
the code group for each character is of uniform length. Since the Morse code is
an uneven length code, it cannot be used in teletypewriter operation without additional
code converters.
The FIVE-UNIT (five-level) Code has been the most commonly used in modern printing
telegraphy and is universally used in teletypewriter operation. This is also known
as the Baudot code. The mechanical sending device in the teletypewriter divides
the sending time for each character into five short code elements (impulses) of
equal duration. The five-unit code is an example of what is called an even length
or constant length code (one in which the number of signal elements for a character
is the same for every character and the duration of each element is constant). In
the five-unit code, each character consists of a combination of five signal elements;
each element may be either a mark or a space. a total of thirty-two combinations
of signal elements are possible with this arrangement.
The thirty-two possible combinations available from the five-unit code are insufficient
to handle the alphabet and numbers since twenty-six combinations are required for
the letters of the English alphabet alone. This leaves only six combinations for
numerals, symbols, or nonprinting functions. This number of combinations is obviously
inadequate; therefore, two of the thirty-two combinations are used as shift signals.
The shift signals are often referred to as case-shift signals (one case is a letter
shift, and the other a figure shift.) These two shift signals permit the remaining
code combination to be used as letter-shift signals for letters and as figure-shift
signals for numerals, function signs, and so forth. When a letter shift is transmitted,
it sets the receiving instrument in a condition to recognize any letter signal combination.
It will recognize letter combinations until a figure shift is received. Then the
receiving instrument sets itself in a condition to recognize any figure signal combination
received. The interpretation of a signal combination is determined by the previous
shift signal. This plan enables 30 of the 32 available combinations to have two
meanings.
Q14. There are not enough combinations of the five-unit code to handle
the alphabet, symbols and so forth. What is used to increase the number of available
code combinations?
Modes of Operation
The two basic modes of teletypewriter operation are ASYNCHRONOUS (start-stop)
and SYNCHRONOUS. The most common mode used in teletypewriter operation is the start-stop
mode. Synchronous operation is used more in high-speed data systems. Let's examine
their differences.
ASYNCHRONOUS. - In the start-stop mode of operation, the receiving device is
allowed to run for only one character. It is then stopped to await the reception
of a start signal indicating the next character is
3-17
about to start. In this manner any difference in speed between the transmitting
and receiving devices can accumulate only during the duration of one character.
However, you should note that a penalty must be paid for this advantage. The length
of each character must be increased to include a unit (element) to start the receiving
device and another to stop it.
The start unit precedes the first intelligence unit and is always a space signal.
Its purpose is to start the receiving machine. The stop unit follows the last code
unit and is always a mark signal. Its purpose is to stop the receiving machine in
preparation for receiving the next character. The start unit must be equal to at
least one unit of the code. The standard mode uses a stop unit that is 1.42 times
the length of one intelligence unit. It is common practice to refer to a code unit
as an element and to use the terms interchangeably. You will also hear duration
of a unit referred to as the unit interval.
The length of time required to transmit the entire character is called the CHARACTER
INTERVAL. Character interval becomes very important in some transmissions because
certain items of equipment are character length conscious or code conscious. Stop
unit intervals of various lengths are used or produced by various equipment (1.0,
1.27, 1.5, 1.96, 2.0, and so forth). Basically, the only difference between them
is the length of time required to transmit one character.
SYNCHRONOUS. - Synchronous teletypewriter operation does not
in all cases have to rely upon elements of the transmitted character to maintain
proper position in relation to the receiving device. External timing signals may
be used that allow the start and stop elements to be discarded. You will then see
only the elements necessary to convey a character.
Synchronous systems have certain advantages over asynchronous systems. The amount
of time taken to transmit stop and start elements is made available for information
transmission rather than for synchronizing purposes. Only the intelligence elements
are transmitted. In start-stop signaling, the ability of the receiving device to
select the proper line signal condition is dependent upon signal quality. For example,
suppose the stop-to-start transition arrives before it should; then, because of
atmospherics, all subsequent selection positions in that character will appear earlier
in time in each code element. a synchronous system has a higher capability for accepting
distorted signals because it does not depend on a start-stop system for synchronization.
Modulation Rate
Several terms are used to refer to teletypewriter modulation rates or signaling
speeds. These include BAUD RATE, BITS PER SECOND, and WORDS PER MINUTE. Baud is
the only term that is technically accurate. The other terms are either approximations
or require explanation.
The word baud by definition is a unit of modulation rate. You will sometimes
see it used to refer to a signal element, but this reference is technically incorrect.
Baud rate is the reciprocal of the time in seconds of the shortest signal element.
To find the modulation rate of a signal in bauds, you must divide the number 1 by
the time duration of the shortest unit interval present in the signal. For example,
22 milliseconds (.022 seconds) is the time interval of the shortest unit in the
five-unit code at 60 words per minute. To find the number of bauds corresponding
to 60 words per minute, divide 1 by .022. Rounding off the result of the division
gives us the number 45.5, which is the baud equivalent of 60 words per minute. Each
increase in words per minute will correspondingly decrease the signal unit time
interval. (The defense communications system standard speed for teletypewriter operation
is 100 words per minute or 75 baud.)
Words per minute is used only when speaking in general terms for an approximation
of speed. The term 100 words per minute means 100 five letter words with a space
between them can be transmitted in a 60-second period. However, you can obtain this
nominal words-per-minute rate in several systems by
3-18
varying either modulation rate or the individual character interval (length).
For this reason, the modulation rate (baud) method of reference rather than words
per minute is used.
Formula for baud rate and words per minute are as follows
BIT is an acronym for the words binary digit. In binary signals, a bit is equivalent
to a signal element. Because of the influence of computer and data processing upon
our language, modulation rate is sometimes expressed in bits per second. When you
understand all signal elements being transmitted are of equal length, then the modulation
rate expressed in bits per second is the same as the modulation rate expressed in
baud.
Dc Circuits
You were told the two conditions mark and space may be represented by any convenient
means. The two most common are NEUTRAL and POLAR operation. In neutral, current
flow represents the mark, and no current flow represents the space; in polar operation,
current impulses of one polarity represent mark, and impulses of the opposite polarity
of equal magnitude represent the space.
NEUTRAL. - Neutral circuits make use of the presence or absence
of current flow to convey information. a neutral teletypewriter circuit is composed
of a transmitting device, a battery source to supply current, a variable resistor
to control the amount of current, a receiving device, and a line for the transmission
medium.
POLAR. - Polar operation differs from neutral operation in two
ways. Current is always present in the polar system, and it is either positive or
negative. a polar teletypewriter circuit contains the same items as a neutral circuit
plus an additional "battery" source. The battery referred to here is not an actual
battery but is a solid-state dc power supply. It provides variable current to the
teletypewriters. The reason for having an extra battery source is because polar
circuits use positive battery for marks and negative battery for spaces.
You will find in polar operation that the distortion of a signal is almost impossible
through low line currents, high reactance, or random patching of signal circuits
or equipment. In polar signaling when you experience a complete loss of current
(a reading of zero on a milliammeter), you know you have line or equipment trouble;
whereas the same condition with neutral signaling may indicate a steady space is
being transmitted. This gives us a condition called RUNNING OPEN. Under this condition,
the teletypewriter appears to be running because the machines is decoding the constant
space as the Baudot character blank and the type hammer continually strikes the
type box but there is no printing or type box movement across the page.
Q15. What are the two teletypewriter modes of operation?
Q16. Define baud.
Q17. Define bit.
Q18. What are the two types of dc operations used to represent mark
and space conditions?
3-19
Basic Systems
When two TTYs are connected by communications wire or cable (over short or long
distances), the exchange of information between them is direct. When the teletypewriters
are not physically joined, exchange of information is more involved. Direct-current
mark and space intervals cannot be sent through the air. The gap between the machines
must be bridged by radio using a radio transmitter and receiver. The transmitter
produces a radio frequency carrier wave to carry the mark and space intelligence.
a KEYER is needed to change the dc pulses from the TTY into corresponding mark and
space modulation for the carrier wave in the transmitter. The radio receiver and
a CONVERTER are required to change the
radio frequency signal back to dc pulses.
Radio Teletypewriter Systems
The Navy uses two basic radio teletypewriter (RATT) systems. These are the TONE-MODULATED
System, referred to as audio-frequency tone shift (AFTS), and the CARRIER-Frequency
SHIFT System, referred to as radio-frequency-carrier shift (RFCS). The RFCS system
is also called frequency-shift keying (FSK).
Figure 3-19 shows a modulated carrier wave with audio tone impulses impressed
on the radio- frequency carrier wave. These correspond to dc mark and space signals.
Figure 3-19. - Modulated carrier wave with audio tone for mark and space.
We can best explain the RFCS signal by comparing it to the on-off CW signal.
CW signals are essentially a constant frequency with no variations along the frequency
axis. Figure 3-20, view A, is an example. The complete intelligence is carried as
variations in the signal amplitude. Figure 3-20, view B, shows the same signal as
a shift in frequency between the mark and space.
3-20
|