Inductors are passive devices used in electronic circuits to store energy in the form of a magnetic field. They
are the compliment of capacitors, which store energy in the form of
an electric field. An ideal inductor is the equivalent of a short circuit (0 ohms) for direct currents (DC), and
presents an opposing force (reactance) to alternating currents (AC) that depends on the frequency of the current.
The reactance (opposition to current flow) of an inductor is proportional to the frequency of the current flowing
through it. Inductors are sometimes referred to as "coils" because most inductors are physically constructed of
coiled sections of wire.
Inductor Package Styles
The property of inductance that opposes a change in current flow is exploited for the purpose of preventing signals
with a higher frequency component from passing while allowing signals of lower frequency components to pass. This
is why inductors are sometimes referred to as "chokes," since they effectively choke off higher frequencies. A common
application of a choke is in a radio amplifier biasing circuit where the collector of a transistor needs to be supplied
with a DC voltage without allowing the RF (radio frequency) signal from conducting back into the DC supply.
When
used in series (left drawing) or
parallel (right drawing) with its circuit compliment, a capacitor,
the inductorcapacitor combination forms a circuit that resonates at a particular frequency that depends on the
values of each component. In the series circuit, the impedance to current flow at the resonant frequency is zero
with ideal components. In the parallel circuit (right), impedance to current flow is infinite with ideal components.
Realworld
inductors made of physical components exhibit more than just a pure inductance when present in an AC circuit. A
common circuit simulator model is shown to the left. It includes the actual ideal inductor with a parallel resistive
component that responds to alternating current. The DC resistive component is in series with the ideal inductor,
and a capacitor is connected across the entire assembly and represents the capacitance present due to the proximity
of the coil windings. SPICEtype simulators use this or an even more sophisticated model to facilitate more accurate
calculations over a wide range of frequencies.
Related Pages on RF Cafe
 Inductors &
Inductance Calculations
 Inductance Conversions

Standard Inductor Values

Inductor Vendors
The
HamWaves.com website has a very sophisticated
calculator for coil inductance that allows you to en9ter the conductor diameter.
Equations (formulas) for combining inductors in series and parallel are given below. Additional equations are
given for inductors of various configurations.
SeriesConnected Inductors
Total inductance of seriesconnected inductors is equal to the sum of the individual inductances. Keep units
constant.
Closely Wound Toroid
Rectangular CrossSection
Coaxial Cable Inductance
Straight Wire Inductance
These
equations apply for when the length of the wire is much longer than the wire diameter (look
up wire diameter here). The ARRL Handbook presents the equation for
units of inches and µF:
For lower frequencies  up through about VHF, use this formula:
Above VHF, skin effect causes the ¾ in the top equation to approach unity (1), so use this equation:
Straight Wire Parallel to Ground Plane w/One End Grounded
The ARRL Handbook presents this equation for a straight wire suspended above a ground plane, with one end grounded
to the plane:
a = wire radius,
l = wire
length parallel to ground plane
h = height of wire above ground plane to bottom of wire
Parallel Line Inductance
MultiLayer AirCore Inductance
Wheeler's Formula:
ParallelConnected Inductors
Total inductance of parallelconnected inductors is equal to the reciprocal of the sum of the reciprocals of
the individual inductances. Keep units constant.
Inductance Formula Constants and Variables
The following physical constants and mechanical dimensional variables apply to equations on this page. Units
for equations are shown inside brackets at the end of equations; e.g.,
means lengths are in inches and inductance is in Henries. If no units are indicated, then any may be used so long
as they are consistent across all entities; i.e., all meters, all µH, etc.
C = Capacitance
L = Inductance
N = Number of turns
W = Energy
ε_{r} = Relative permittivity
(dimensionless)
ε_{0} = 8.85 x 10^{12} F/m (permittivity of free
space)
µ_{r} = Relative permeability (dimensionless)
µ_{0}
= 4π x 10^{7} H/m
(permeability of free space)
1 meter = 3.2808 feet <—> 1 foot = 0.3048 meters
1 mm = 0.03937 inches <—>
1 inch = 25.4 mm
Also, dots (not to be confused with decimal points) are used to indicate multiplication
in order to avoid ambiguity.
Inductive Reactance
Inductive reactance (X_{L}, in Ω) is proportional to the frequency (ω, in radians/sec, or
f, in Hz) and inductance (L, in Henries). Pure inductance has a phase angle of 90° (voltage leads current with
a phase angle of 90°).
Energy Stored in an Inductor
Energy (W, in Joules) stored in an inductor is half the product of the inductance (L, in Henries) and the current
(I, in amp) through the device.
Voltage Across an Inductor
The inductor's property of opposing a change in current flow causes a counter EMF (voltage) to form across its
terminals opposite in polarity to the applied voltage.
Quality Factor of Inductor
Quality factor is the dimensionless ratio of reactance to resistance in an inductor.
SingleLayer Round Coil Inductance
Wheeler's Formula for d >> a:
In general for a = wire radius:
Note: If lead lengths are significant, use the straight wire calculation to add that inductance.
SingleLayer Rectangular Coil Inductance
This equation is too long to break up  click to enlarge:
Finding the Equivalent "R_{Q}"
Since
the "Q" of an inductor is the ratio of the reactive component to the resistive component, an equivalent circuit
can be defined with a resistor in parallel with the inductor. This equation is valid only a a single frequency,
"f," and must be calculated for each frequency of interest.