Search RFCafe.com                           
      More Than 17,000 Unique Pages
Please support me by ADVERTISING!
Serving a Pleasant Blend of Yesterday, Today, and Tomorrow™ Please Support My Advertisers!
   Formulas & Data
Electronics | RF
Mathematics
Mechanics | Physics
     AI-Generated
     Technical Data
Pioneers | Society
Companies | Parts
Principles | Assns


 About | Sitemap
Homepage Archive
        Resources
Articles, Forums Calculators, Radar
Magazines, Museum
Radio Service Data
Software, Videos
     Entertainment
Crosswords, Humor Cogitations, Podcast
Quotes, Quizzes
   Parts & Services
1000s of Listings
 Vintage Magazines
Electronics World
Popular Electronics
Radio & TV News
QST | Pop Science
Popular Mechanics
Radio-Craft
Radio-Electronics
Short Wave Craft
Electronics | OFA
Saturday Eve Post

Software: RF Cascade Workbook
RF Stencils Visio | RF Symbols Visio
RF Symbols Office | Cafe Press
Espresso Engineering Workbook

Aegis Power  |  Alliance Test
Centric RF  |  Empower RF
ISOTEC  |  Reactel  |  RFCT
San Fran Circuits

Noisecom

Innovative Power Products Cool Chip Thermal Dissipation - RF Cafe

Anritsu Test Equipment - RF Cafe

Please Support RF Cafe by purchasing my  ridiculously low-priced products, all of which I created.

RF Cascade Workbook for Excel

RF & Electronics Symbols for Visio

RF & Electronics Symbols for Office

RF & Electronics Stencils for Visio

RF Workbench

T-Shirts, Mugs, Cups, Ball Caps, Mouse Pads

These Are Available for Free

Espresso Engineering Workbook™

Smith Chart™ for Excel

Rigol DHO1000 Oscilloscope - RF Cafe

Properties of Modes in a Circular Waveguide

Circular waveguide formula variables - RF CafeCircular waveguides offer implementation advantages over rectangular waveguide in that installation is much simpler when forming runs for turns and offsets - particularly when large radii are involved - and the wind loading is less on a round cross-section, meaning towers do not need to be as robust. Manufacturing is generally simpler, too, since only one dimension - the radius - needs to be maintained. Applications where differential rotation is required, like a rotary joint for a radar antenna, absolutely require a circular cross-section, so even if rectangular waveguide is used for the primary routing, a transition to circular - and then possibly back to rectangular - is needed.

Tabel of Time-Harmonic Mode Properties in a Circular Waveguide, by Brian Sequeira - RF CafeCalculations for circular waveguide requires the application of Bessel functions, so working equations with a cheap calculator is not going to happen. However, even spreadsheets have Bessel function (Jn) capability nowadays, so determining cutoff frequencies, field strengths, and any of the other standard values associated with circular waveguide can be done relatively easily. The formulas below represent those quantities most commonly needed for circular waveguides. Please see the figure at the upper left for a, Φ, x, y, and r variable references.

Note: I received the following note from Brian Sequeira, of the Johns Hopkins University Applied Physics Laboratory. "I reviewed tables on rectangular and circular waveguides, and based on my experience of what confuses first-time readers and what does not, I made adjustments to notation & symbols, corrected a couple of sign errors, and put expressions in a form that make their units more apparent." The table for circular waveguide can be viewed full-size by clicking on the thumbnail to the right. Brian also provided a table for rectangular waveguide.

Quantity TE Modes TM Modes
Hz RF Cafe: Circular waveguide equations 0
Ez 0 RF Cafe: Circular waveguide equations
Hr RF Cafe: Circular waveguide equations RF Cafe: Circular waveguide equations
Hϕ RF Cafe: Circular waveguide equations RF Cafe: Circular waveguide equations
Er RF Cafe: Circular waveguide equations RF Cafe: Circular waveguide equations
Eϕ RF Cafe: Circular waveguide equations RF Cafe: Circular waveguide equations
βnm RF Cafe: Circular waveguide equations RF Cafe: Circular waveguide equations
Zh,nm RF Cafe: Circular waveguide equations  
Ze,nm   RF Cafe: Circular waveguide equations
kc,nm RF Cafe: Circular waveguide equations RF Cafe: Circular waveguide equations
λc,nm RF Cafe: Circular waveguide equations RF Cafe: Circular waveguide equations
Power†† RF Cafe: Circular waveguide equations RF Cafe: Circular waveguide equations
α RF Cafe: Circular waveguide equations RF Cafe: Circular waveguide equations
RF Cafe: Circular waveguide equations
The expression for α is not valid for degenerate modes.
Equations derived from "Foundations for Microwave Engineering, R.E. Collin, McGraw-Hill
†† Thanks to Patrick L. for finding error where "4" in denominator should be "2."

Values of pnm for TM Modes

n pn1 pn2 pn3
0 2.405 5.520 8.654
1 3.832 7.016 10.174
2 5.135 8.417 11.620

Values of p'nm for TE Modes

n p'n1 p'n2 p'n3
0 3.832 7.016 10.174
1 1.841 5.331 8.536
2 3.054 6.706 9.970

Related Pages on RF Cafe

Rigol DHO1000 Oscilloscope - RF Cafe
Innovative Power Products (IPP) RF Combiners / Dividers

Werbel Microwave (power dividers, couplers)

Windfreak Technologies Frequency Synthesizers - RF Cafe