Electronics World articles Popular Electronics articles QST articles Radio & TV News articles Radio-Craft articles Radio-Electronics articles Short Wave Craft articles Wireless World articles Google Search of RF Cafe website Sitemap Electronics Equations Mathematics Equations Equations physics Manufacturers & distributors LinkedIn Crosswords Engineering Humor Kirt's Cogitations RF Engineering Quizzes Notable Quotes Calculators Education Engineering Magazine Articles Engineering software RF Cafe Archives Magazine Sponsor RF Cafe Sponsor Links Saturday Evening Post NEETS EW Radar Handbook Microwave Museum About RF Cafe Aegis Power Systems Alliance Test Equipment Centric RF Empower RF ISOTEC Reactel RF Connector Technology San Francisco Circuits Anritsu Amplifier Solutions Anatech Electronics Axiom Test Equipment Conduct RF Copper Mountain Technologies Exodus Advanced Communications Innovative Power Products KR Filters LadyBug Technologies Rigol TotalTemp Technologies Werbel Microwave Windfreak Technologies Wireless Telecom Group Withwave RF Cafe Software Resources Vintage Magazines RF Cafe Software WhoIs entry for RF Cafe.com Thank you for visiting RF Cafe!
PCB Directory (Manufacturers)

KR Electronics (RF Filters) - RF Cafe

Innovative Power Products Passive RF Products - RF Cafe

Please Support RF Cafe by purchasing my  ridiculously low-priced products, all of which I created.

RF Cascade Workbook for Excel

RF & Electronics Symbols for Visio

RF & Electronics Symbols for Office

RF & Electronics Stencils for Visio

RF Workbench

T-Shirts, Mugs, Cups, Ball Caps, Mouse Pads

These Are Available for Free

Espresso Engineering Workbook™

Smith Chart™ for Excel

Anritsu Test Equipment - RF Cafe

Module 8 - Introduction to Amplifiers
Navy Electricity and Electronics Training Series (NEETS)
Chapter 2:  Pages 2-31 through 2-35

Module 8 - Introduction to Amplifiers

Pages i, 1-1, 1-11, 1-21, 1-31, 2-1, 2-11, 2-21, 2-31, 3-1, 3-11, 3-21, 3-31, 3-41, 3-51, 3-61, AI-1, Index

NEETS Modules
- Matter, Energy, and Direct Current
- Alternating Current and Transformers
- Circuit Protection, Control, and Measurement
- Electrical Conductors, Wiring Techniques, and Schematic Reading
- Generators and Motors
- Electronic Emission, Tubes, and Power Supplies
- Solid-State Devices and Power Supplies
- Amplifiers
- Wave-Generation and Wave-Shaping Circuits
- Wave Propagation, Transmission Lines, and Antennas
- Microwave Principles
- Modulation Principles
- Introduction to Number Systems and Logic Circuits
- - Introduction to Microelectronics
- Principles of Synchros, Servos, and Gyros
- Introduction to Test Equipment
- Radio-Frequency Communications Principles
- Radar Principles
- The Technician's Handbook, Master Glossary
- Test Methods and Practices
- Introduction to Digital Computers
- Magnetic Recording
- Introduction to Fiber Optics
Note: Navy Electricity and Electronics Training Series (NEETS) content is U.S. Navy property in the public domain.

Combination Peaking is accomplished by using both series and shunt peaking.

Combination Peaking

Low-Frequency Compensation is accomplished in a video amplifier by the use of a parallel RC circuit in series with the load resistor.

Low-FREQUENCY Compensation

2-31

A Radio-Frequency (RF) Amplifier uses Frequency-Determining NetworkS

to provide the required response at a given frequency.

Radio-FREQUENCY (RF) Amplifier

The Frequency-Determining Network in an RF amplifier provides maximum impedance at the desired frequency. It is a parallel LC circuit which is called a Tuned Circuit

FREQUENCY-Determining Network

Transformer Coupling is the most common form of coupling in RF amplifiers. This coupling is accomplished by the use of RF transformers as part of the frequency-determining network for the amplifier.

Transformer Coupling

2-32

Adequate Bandpass is accomplished by optimum coupling in the RF transformer or by the use of a SWAMPING Resistor.

Neutralization in an RF amplifier provides feedback (usually positive) to overcome the effects caused by the base-to-collector interelectrode capacitance.

Neutralization

Answers to Questions Q1. Through Q42.

A-1.   The difference between the upper and lower frequency limits of an amplifier.

A-2.   The half-power points of a frequency-response curve. The upper and lower limits of the band f frequencies for which the amplifier is most effective.

A-3.   (A) f2  = 80 kHz, f1  = 30 kHz, BW = 50 kHz (B) f2  = 4 kHz, f1  = 2 kHz, BW = 2 kHz

A-4.   The capacitance and inductance of the circuit and the interelectrode capacitance of the transistor.

A-5.   Negative (degenerative) feedback.

A-6.   It decreases.

A-7.   It increases.

A-8.   The capacitance of the circuit.

A-9.    Peaking coils.

A-10.   The relationship of the components to the output-signal path.

A-11.   Combination peaking.

A-12.   The coupling capacitor (C3).

2-33

A-13.   a shunt peaking coil for Q2.

A-14.   a decoupling capacitor for the effects of R2.

A-15.   a part of the low-frequency compensation network for Q1.

A-16.   a series peaking coil for Q1.

A-17.   a swamping resistor for L2.

A-18.   L1, L2, and R5.

A-19.   R9 and C5.

A-20.   The gain increases.

A-21.   The gain decreases.

A-22.   To provide maximum impedance at the desired frequency.

A-23.   Yes.

A-24.   By changing the value.

A-25.   Transformer coupling.

A-26.   It uses fewer components than capacitive coupling and can provide an increase in gain.

A-27.   a step-down transformer.

A-28.   a too-narrow bandpass.

A-29.   By using an optimally-coupled transformer.

A-30.   Low gain at the center frequency.

A-31.   a swamping resistor in parallel with the tuned circuit.

A-32.   RF transformers are used and the transistor is neutralized.

A-33.   Degenerative or negative.

A-34.   By neutralization such as the use of a capacitor to provide regenerative (positive) feedback.

A-35.  C2 and the secondary of T1.

A-36.   R1 provides the proper bias to the base of Q1 from VBB.

A-37.   R2 provides the proper bias to the emitter of Q1.

A-38.   The output would decrease. (C4 decouples R2 preventing degenerative feedback from R2.)

A-39.    C5 and the primary of T2.

A-40.   Four.

2-34

A-41.   The dotted lines indicate that these capacitors are "ganged" and are tuned together with a single control.

A-42.   C3 provides neutralization for Q1.

2-35

Anritsu Test Equipment - RF Cafe
Amplifier Solutions Corporation (ASC) - RF Cafe

TotalTemp Technologies (Thermal Platforms) - RF Cafe

LadyBug RF Power Sensors