Electronics World articles Popular Electronics articles QST articles Radio & TV News articles Radio-Craft articles Radio-Electronics articles Short Wave Craft articles Wireless World articles Google Search of RF Cafe website Sitemap Electronics Equations Mathematics Equations Equations physics Manufacturers & distributors LinkedIn Crosswords Engineering Humor Kirt's Cogitations RF Engineering Quizzes Notable Quotes Calculators Education Engineering Magazine Articles Engineering software RF Cafe Archives Magazine Sponsor RF Cafe Sponsor Links Saturday Evening Post NEETS EW Radar Handbook Microwave Museum About RF Cafe Aegis Power Systems Alliance Test Equipment Centric RF Empower RF ISOTEC Reactel RF Connector Technology San Francisco Circuits Anritsu Amplifier Solutions Anatech Electronics Axiom Test Equipment Conduct RF Copper Mountain Technologies Exodus Advanced Communications Innovative Power Products KR Filters LadyBug Technologies Rigol TotalTemp Technologies Werbel Microwave Windfreak Technologies Wireless Telecom Group Withwave RF Cafe Software Resources Vintage Magazines RF Cafe Software WhoIs entry for RF Cafe.com Thank you for visiting RF Cafe!
Cafe Press

KR Electronics (RF Filters) - RF Cafe

Innovative Power Products Passive RF Products - RF Cafe

Please Support RF Cafe by purchasing my  ridiculously low-priced products, all of which I created.

RF Cascade Workbook for Excel

RF & Electronics Symbols for Visio

RF & Electronics Symbols for Office

RF & Electronics Stencils for Visio

RF Workbench

T-Shirts, Mugs, Cups, Ball Caps, Mouse Pads

These Are Available for Free

Espresso Engineering Workbook™

Smith Chart™ for Excel

Temwell Filters

Bessel Functions & Graphs

Bessel function graph - RF CafeBessel functions of the first kind are shown in the graph below. In frequency modulation (FM), the carrier and sideband frequencies disappear when the modulation index (β) is equal to a zero crossing of the function for the nth sideband. For example, the carrier (0th sideband) disappears when the Jn(0,β) plot equals zero. It is this feature that broadcasters exploit to suppress the carrier rather than simply inserting a bandstop filter between the transmitter and the antenna.

Using a filter greatly reduces the efficiency of the system since the power amplifier is outputting the carrier signal only to have it shorted to ground via the filter. Adjusting the modulation index to the proper value causes all of the output power to be concentrated in the usable signal, thus increasing efficiency. See FM. The 1st sideband disappears when the Jn(1,β) plot equals zero, the 2nd sideband disappears when the Jn(2,β) equals zero, etc., etc.

Bessel filter pole values can be found here. Bessel filter prototype values can be found here.

Sample of Bessel Function Zero Crossings
J0(β)

J1(β)

J2(β)

J3(β)

J4(β)

J5(β)

J6(β)

β = 2.40

β = 5.49

β = 8.65

β = 11.8

β = 3.83

β = 7.05

β = 10.2

β = 5.14

β = 8.42

β = 11.6

β = 6.38

β = 8.42

β = 11.6

β = 7.59

β = 11.1

β = 14.4

β = 8.77

β = 12.3

β = 15.7

β = 9.94

β = 13.6

β = 17.0

Note: Graph generated using Mathcad 4.0.

Related Pages on RF Cafe

- Amplitude Modulation

- Frequency Modulation

- Quadrature (I/Q) Modulator Sideband Suppression

- Bessel Functions & Graphs

- Modulation Principles, AM Modulation, NEETS

- Modulation Principles, FM Modulation, NEETS

- Modulation Principles, Demodulation, NEETS

- Frequency Mixer, Converter, Multiplier, Modulator Vendors

Temwell Filters
RF Cascade Workbook 2018 by RF Cafe

Noisecom

Exodus Advanced Communications Best in Class RF Amplifier SSPAs