Before most people listened to radio and television programming
via cable, satellite, and/or the Internet, broadcasts were received
over the air, usually from local stations. A common problem
in the days of vacuum tube Ham transmitters back in the day
was inadvertently causing broadcast interference (BCI) or specifically
in the case of television, TVI, due to insufficient filtering,
shielding, or design. Nowadays, we generally refer to all such
unintentional and incidental radiation as radio frequency interference
(RFI). Lots of articles were written on the subject in the 1940s
through about the 1970s. Some RF spectrum is shared by more
than one entity per FCC and other countries' band plans, with
primary and secondary allocations assigned for some. For example,
in the U.S., the 33 cm amateur radio band coexists with
the 902-928 MHz unlicensed Part 15 ISM
(Industrial, Scientific, and Medical)
band. Ditto for some of the other ISM bands. If you're not a
Ham, you might be surprised to learn that licensed amateurs
have primary rights to the band's use, and that any device operating
under Part 15 is obligated by law to not interfere with amateur
activities. If, for instance, you live in an apartment and your
other-side-of-the-wall neighbor's cordless phone is spewing
RFI that degrades your ability to operate, he/she/it is required
to eliminate the problem. Both the ARRL and the FCC advise an
amicable initial approach to said owner of interfering device
in order to promote and preserve good community relations.
Mac's Radio Service Shop: Barney, Beauty, and BCI
By John T. Frye

Mac, his chin clasped thoughtfully between thumb and forefinger,
stood looking down at Barney, his redheaded assistant. For five
minutes that worthy had been prodding away at a soldered connection
on the set in front of him with a soldering iron whose cord-plug
still trailed on the floor at his feet.
Stepping quietly to the door of the service department, Mac
beckoned to Miss Perkins, the office force of Mac's Radio Service
Shop. As the two stood there in the door watching Barney's continuing
efforts to melt the solder with a stone-cold iron, the boy looked
up, followed their amused gaze down to the plug that he had
forgotten to put in, and then blushed furiously.
"Matilda," Mac inquired,' "what would you say has come over
our Barney?"
"We-l-l-l," Miss Perkins replied, "it just might have something
to do with that pretty girl I saw him walking to work with this
morning."
"Aw, it does not," Barney denied, if possible, blushing more
furiously than ever. "That was just Margie, our new neighbor.
Boy, was she mad at me last night!"
"Pray tell us more," Mac urged. "Well, I was sitting there
in the ham shack bumping my gums with a fellow down in the Canal
Zone on ten meters, when all at once the final arced over, the
circuit breakers kicked out, and Margie - I had never seen her
before, because they just moved in two days ago - stuck her
head in the open window and said that now perhaps she could
listen to her 'Parade of Bands' program without having to put
up with my going yackety-yackety right in the middle of it.
She had taken a pair of pruning shears and had cut off the coax
right where it comes through the wall on its way up to the beam,"
Barney explained admiringly.
"After hearing you beef about your mother's daring to touch
that beloved transmitter just to dust it, I have no doubt at
all that you dived right through the window and cut the young
lady's throat with the pruning shears," Mac guessed.
"You can't get mad at anyone who looks as pretty as Margie
does when her temper is up," Barney explained patiently; "and
I was blanketing her little radio. After I managed to cool her
down a bit, we went over and got the little set and ran some
tests. When my rig is on, you can hear me and not much else.
I told her I would see if I could not do something about that;
so I brought the set down to the shop this morning. That's it
on the end of the bench."
Mac picked up the set, and Miss Perkins went back to her
desk, explaining that if the conversation was going to descend
to "just radio" she was no longer interested.
"Did you notice if the volume control had any effect on the
signal from your transmitter?" Mac asked.

Fig. 1 - Volume control circuit
"Yes, when I turned the volume down, my signal disappeared."
"Then I think you can take care of this case of interference
very easily. Whenever you have a case of a signal, especially
a high-frequency signal such as ten meters, coming in all over
the broadcast band with equal volume for all settings of the
tuning control, you can be pretty sure that you are getting
rectification of the signal at some point in the audio system.
In these little sets using zero-bias high gain triodes, like
the 12SQ7, the rectification is taking place in the grid circuit
of the triode."
As he talked, Mac sketched Fig. 1 on the blackboard at the
end of the bench.
"R1 is often as high as ten megohms," he explained.
"If very much of your ten meter signal appears on the grid of
the tube, it is rectified and flows to ground through R1.
This biases the tube so that it operates on the 'detector-portion'
of the curve, and your high-gain audio amplifier has become
a good grid-leak detector that causes your ten meter signal
to ride right in along with the regular signal being delivered
by the i.f. channel."
"Couldn't that happen in the grid circuit of any tube?"
"Yes, but it usually happens in the very first audio stage for
that is where you find the high-resistance grid resistor. I
am sure it is there in this case, for you say that you can cut
out your signal with the volume control. What actually happens
is that when you move the slider of the volume control toward
the ground, C2 bypasses your ten meter r.f. to ground.
Incidentally, that gives us our clue as to how to effect a cure.
That is simply to install C1 directly from the grid
to ground. The capacity is around 250 μμfd. - enough to
furnish a low-impedance path for the r.f. without being large
enough to bypass any of the higher audio frequencies."
"Are there any other ways of doing the same thing?"
"Yes, you could lower the value of R1 but that
disturbs, in some degree, the efficiency of the triode amplifier.
You can insert a small r.f. choke coil in the grid lead, or
you can put a resistor of around 100,000 ohms right from the
grid to the leads going to it; but I have found the use of the
condenser the cheapest and most effective. I have, though; used
the r.f. choke coil with gridcap tubes where it is not convenient
to employ a condenser."
"When I work seventy-five meters, I notice that I can pick
up my signal at two or three spots on the broadcast band. We
call this 'image reception,' but to tell you the truth, I have
never had a very clear idea of just what was happening."
Before answering, Mac attached his signal generator to the
antenna and ground connections of the set on the bench and turned
both on.
"First, we set the signal generator and the receiver both
to 1300 kc.," he explained. "Now can you tell me at what frequency
the oscillator is operating in this set with a 456 kc. i.f.?"
"Just 456 kc. higher, or 1756 kc.," Barney said promptly.
"That's right. Suppose we move the , signal generator to
a frequency 456 kc. higher than that, or to 2212 kc. The beat
between this frequency and the oscillator - the difference beat,
that is - will be 456 kc., exactly the same as when the signal
from the generator was on the low side of the oscillator frequency.
We will have to increase the output of the signal generator
to get a signal through, for the tuned circuit in the grid circuit
of the mixer tube is tuned to 1300 kc.; but if the signal is
strong enough, it will force its way through."
To demonstrate this, Mac increased the output of the service
generator, and the 400 cycle modulation came through just as
strongly as it had when the generator was set to the receiver's
1300 kc. frequency.
"But I was not operating anywhere near 2212 kc.," Barney
pointed out.
"You will remember that you said the oscillator was operating
on 1756 kc. The second harmonic of that is 3512 kc. Now if your
transmitter were operating on the phone frequency of 3968 kilocycles,
the difference between the frequency of your transmitter and
that of the second harmonic of the receiver's oscillator will
be 456 kc., which will slip right through the i.f. channel along
with any other signal being received and make it sound exactly
as though you were operating in the broadcast band."
Once more Mac proved his point by setting the signal generator
to 3968 kilocycles and producing a good strong signal in the
receiver that had never been moved from its 1300 kc. setting.
"You can take a pencil and paper and figure out that various
harmonics of the receiver's oscillator can combine with a signal
in the 3500-4000 kc. band-falling either 456 kc. above or below
that signal - and produce a difference beat that will be accepted
by the i.f. channel. That is why you can hear your amateur signal
at various spots in the broadcast band."
"How do I get rid of these images." "If the set is well-shielded
and employs an outside antenna, wave-traps of either the parallel-tuned
or the series-tuned type inserted in the antenna lead right
at the receiver will usually get rid of the images in good shape,
as long as the transmitter is not moved in frequency very far
from the frequency to which the traps are resonated; but if
the set employs a loop antenna in which the loop is really the
r.f. coil. as this one does, that is something else again. Anything
you try to no to keep your seventy-five meter signal from reaching
the grid of the mixer tube is nearly certain to upset the tracking
of the tuned circuit.
"Sometimes the signal gets into the mixer tube by way of
the light line rather than through the antenna circuit, and
you can help these sets a lot by bypassing the filament leads
to ground right at the mixer-tube socket. Quite often the best
solution to the image type of interference - especially in a
heavily populated neighborhood - is to select a frequency that
will not allow the images to fall on any popular broadcast in
that vicinity."
With this, Mac went back to work. Barney put in a 250 μμfd.
condenser at the grid of the 12SQ7 tube as Mac had suggested,
and he asked if he could get off a half hour early so that he
could test out the broadcast-interference cure before Margie
got home from work. He promised to report by telephone on the
results.
Mac stayed around the shop a few minutes past his usual closing
time, and just as he was going out the door the telephone rang.
"Mac," Barney said, "that condenser did the trick all right,
but now I have to take it off."
"Why so?" Mac demanded.
Barney's voice came back over the wire with a mixture of
pride and embarrassment: "Margie says that now she wants to
hear my voice."
"Good night, Barney," Mac said softly as he gently replaced
the receiver and went out of the shop grinning.
Posted December 15, 2015
Mac's Radio Service Shop Episodes on RF Cafe
This series of instructive stories was the brainchild of none other than John T.
Frye, creator of the Carl and Jerry series that ran in
Popular Electronics for many years. Mac's Radio Service Shop began life
in Radio & Television News
magazine (which itself started as simply Radio News), and then changed
its name to Mac's Service Shop after the magazine became
Electronics
World. "Mac" is electronics repair shop owner Mac McGregor, and Barney
Jameson his his eager, if not somewhat naive, technician assistant. "Lessons" are
taught in story format with dialogs between Mac and Barney.