Search RFCafe.com                           
      More Than 18,000 Unique Pages
Please support my efforts by ADVERTISING!
Serving a Pleasant Blend of Yesterday, Today, and Tomorrow™
Vintage Magazines
Electronics World
Popular Electronics
Radio & TV News
QST | Pop Science
Popular Mechanics
Radio-Craft
Radio-Electronics
Short Wave Craft
Electronics | OFA
Saturday Eve Post
Please Support My Advertisers!
 
  Formulas & Data
Electronics | RF
Mathematics
Mechanics | Physics
 About | Sitemap
Homepage Archive
        Resources
Articles, Forums Calculators, Radar
Magazines, Museum
Radio Service Data
Software, Videos
     Entertainment
Crosswords, Humor Cogitations, Podcast
Quotes, Quizzes
   Parts & Services
1000s of Listings
Software: RF Cascade Workbook | Espresso Engineering Workbook
RF Stencils for Visio | RF Symbols for Visio
RF Symbols for Office | Cafe Press
Aegis Power | Alliance Test | Centric RF | Empower RF | ISOTEC | Reactel | RFCT | San Fran Circuits
withwave microwave devices - RF Cafe

PCB Directory (Manufacturers)

RF Cascade Workbook 2018 by RF Cafe

Please Support RF Cafe by purchasing my  ridiculously low-priced products, all of which I created.

RF Cascade Workbook for Excel

RF & Electronics Symbols for Visio

RF & Electronics Symbols for Office

RF & Electronics Stencils for Visio

RF Workbench

T-Shirts, Mugs, Cups, Ball Caps, Mouse Pads

These Are Available for Free

Espresso Engineering Workbook™

Smith Chart™ for Excel

DC-70 GHz RF Cables - RF Cafe

Bell Telephone Laboratories - Germanium Transistors
January 1954 Radio & Television News

January 1954 Radio & TV News
January 1954 Radio & Television News Cover - RF Cafe[Table of Contents]

Wax nostalgic about and learn from the history of early electronics. See articles from Radio & Television News, published 1919-1959. All copyrights hereby acknowledged.

GeAs (germanium and arsenic) was the semiconductor substrate material of choice long before the III-V series like GaN and GaAs came along. GeAs would be considered a III-IV semiconductor since Ge is in group IV of the periodic table (Ga is group III, As is group V). It is actually know simply as germanium. 1954, when this advertisement from Bell Telephone Laboratories appeared in Radio & Television News magazine, was the same year that Texas Instruments (TI) introduced the world's first commercially available silicon (Si) transistor. The GeAs boule photo in the ad was printed "life size," which makes it around 2" in diameter. Compare that to 12" diameter wafers standard today for Si. Gallium nitride (GaN), a more exotic high frequency, high temperature semiconductor compound, just recently grew (literally) beyond a 2" diameter boule size where it had been stuck for a decade. Individual device sizes have decreased while wafer sizes have increased, so the number of devices per wafer is way up and the cost per device is way down.

Bell Telephone Laboratories Ad

Bell Telephone Laboratories Ad, January 1954 Radio & Television News - RF CafeGermanium crystal grown at Bell Telephone Laboratories (life size). It is sliced into hundreds of minute pieces to make Transistors. Transistor action depends on the flow of positive current-carriers as well as electrons, which are negative. Arsenic - a few parts per 100,000,000 - added to germanium produces prescribed excess of electrons. With gallium added, positive carriers predominate. Latest junction type Transistor uses both kinds of germanium in the form of a sandwich.

They Grew it for Transistors

Heart of a Transistor - Bell Telephone Laboratories' new pea-size amplifier - is a tiny piece of germanium. If Transistors are to do their many jobs well, this germanium must be of virtually perfect crystalline structure and uniform chemical composition. But it doesn't come that way in nature.

So - Bell scientists devised a new way to grow the kind of crystals they need, from a melt made of the natural product. By adding tiny amounts of special alloying substances to the melt, they produce germanium that is precisely tailored for specific uses in the telephone system.

This original technique is another example of the way Bell Laboratories makes basic discoveries - in this case the Transistor itself - and then follows up with practical ways to make them work for better telephone service.

Section of natural germanium, left, shows varying crystal structure. At right is sectioned single crystal grown at Bell Laboratories.

Improving Telephone Service for America Provides Careers for Creative Men in Scientific and Technical Fields

Bell Telephone Laboratories

 

 

Posted June 7, 2022
(updated from original post on 7/6/2015)

Bell Telephone Laboratories Infomercials
DC-70 GHz RF Cables - RF Cafe
everythingRF RF & Microwave Parts Database (h1)

Innovative Power Products (IPP) Directional Couplers

Anritsu Test Equipment - RF Cafe