    Please Support RF Cafe by purchasing my  ridiculously low−priced products, all of which I created.

RF Workbench  (shareware) # Navy Electricity and Electronics Training Series (NEETS)Module 10 - Introduction to Wave Propagation, Transmission Lines, and Antennas Chapter 1:  Pages 1-31 through 1-40

Module 10 − Introduction to Wave Propagation, Transmission Lines, and Antennas

Pages i, 1−1, 1−11, 1−21, 1−31, 1−41, 2−1, 2−11, 2−21, 2−31, 2−40, 3−1, 3−11, 3−21, 3−31, 3−41, 3−51, 4−1, 4−11, 4−21, 4−31, 4−41, 4−51, Index

speeds in different transparent substances. For example, water never appears as deep as it really is, and objects under water appear to be closer to the surface than they really are. a bending of the light rays causes these impressions.

Another example of refraction is the apparent bending of a spoon when it is immersed in a cup of water. The bending seems to take place at the surface of the water, or exactly at the point where there is a change of density. Obviously, the spoon does not bend from the pressure of the water. The light forming the image of the spoon is bent as it passes from the water (a medium of high density) to the air (a medium of comparatively low density).

Without refraction, light waves would pass in straight lines through transparent substances without any change of direction. Refer back to figure 1-10, which shows refraction of a wave. As you can see, all rays striking the glass at any angle other than perpendicular are refracted. However, the perpendicular ray, which enters the glass normal to the surface, continues through the glass and into the air in a straight line no refraction takes place.

Diffusion of Light

When light is reflected from a mirror, the angle of reflection of each ray equals the angle of incidence. When light is reflected from a piece of plain white paper, however, the reflected beam is scattered, or DIFFUSED, as shown in figure 1-21. Because the surface of the paper is not smooth, the reflected light is broken up into many light beams that are reflected in all directions. Figure 1-21. - Diffusion of light.

Absorption of Light

You have just seen that a light beam is reflected and diffused when it falls onto a piece of white paper. If a light beam falls onto a piece of black paper, the black paper absorbs most of the light rays and very little light is reflected from the paper. If the surface on which the light beam falls is perfectly black, there is no reflection; that is, the light is totally absorbed. No matter what kind of surface light falls on, however, some of the light is absorbed.

Q40.   a light wave enters a sheet of glass at a perfect right angle to the surface. Is the majority of the wave reflected, refracted, transmitted, or absorbed?

Q41.   When light strikes a piece of white paper, the light is reflected in all directions. What do we call this scattering of light?

1-31

COMPARIsON of LIGHT WAVES WITH SOUND WAVES

There are two main differences between sound waves and light waves. The first difference is in velocity. Sound waves travel through air at the speed of approximately 1,100 feet per second; light waves travel through air and empty space at a speed of approximately 186,000 miles per second. The second difference is that sound is composed of longitudinal waves (alternate compressions and expansions of matter) and light is composed of transverse waves in an electromagnetic field.

Although both are forms of wave motion, sound requires a solid, liquid, or gaseous medium; whereas light travels through empty space. The denser the medium, the greater the speed of sound. The opposite is true of light. Light travels approximately one-third slower in water than in air. Sound travels through all substances, but light cannot pass through opaque materials.

Frequency affects both sound and light. a certain range of sound frequencies produces sensations that you can hear. a slow vibration (low frequency) in sound gives the sensation of a low note. a more rapid sound vibration (higher frequency) produces a higher note. Likewise, a certain range of light frequencies produces sensations that you can see. Violet light is produced at the high-frequency end of the light spectrum, while red light is produced at the low-frequency end of the light spectrum. a change in frequency of sound waves causes an audible sensation - a difference in pitch. a change in the frequency of a light wave causes a visual sensation - a difference in color.

For a comparison of light waves with sound waves, see table 1-2.

Table 1-2. - Comparison of Light Waves and Sound Waves Q42.   What three examples of electromagnetic energy are mentioned in the text?

Q43.   What is the main difference between the bulk of the electromagnetic spectrum and the visual spectrum?

1-32

ELECTROMagnetic SPECTRUM

Light is one kind of electromagnetic energy. There are many other types, including heat energy and radio energy. The only difference between the various types of electromagnetic energy is the frequency of their waves (rate of vibration). The term SPECTRUM is used to designate the entire range of electromagnetic waves arranged in order of their frequencies. The VIsIBLE SPECTRUM contains only those waves which stimulate the sense of sight. You, as a technician, might be expected to maintain equipment that uses electromagnetic waves within, above, and below the visible spectrum.

There are neither sharp dividing lines nor gaps in the ELECTROMagnetic SPECTRUM. Figure

1-22 illustrates how portions of the electromagnetic spectrum overlap. Notice that only a small portion of the electromagnetic spectrum contains visible waves, or light, which can be seen by the human eye. Figure 1-22. - Electromagnetic spectrum.

ELECTROMagnetic WAVES

In general, the same principles and properties of light waves apply to the communications electromagnetic waves you are about to study. The electromagnetic field is used to transfer energy (as communications) from point to point. We will introduce the basic Antenna as the propagation source of these electromagnetic waves.

1-33

The Basic Antenna

The study of antennas and electromagnetic wave propagation is essential to a complete understanding of radio communication, radar, loran, and other electronic systems. Figure 1-23 shows a simple radio communication system. In the illustration, the transmitter is an electronic device that generates radio-frequency energy. The energy travels through a transmission line (we will discuss this in chapter 3) to an antenna. The antenna converts the energy into radio waves that radiate into space from the antenna at the speed of light. The radio waves travel through the atmosphere or space until they are either reflected by an object or absorbed. If another antenna is placed in the path of the radio waves, it absorbs part of the waves and converts them to energy. This energy travels through another transmission line and is fed to a receiver. From this example, you can see that the requirements for a simple communications system are (1) transmitting equipment, (2) transmission line, (3) transmitting antenna, (4) medium, (5) receiving antenna, and (6) receiving equipment. Figure 1-23. - Simple radio communication system.

An antenna is a conductor or a set of conductors used either to radiate electromagnetic energy into space or to collect this energy from space. Figure 1-24 shows an antenna. View a is a drawing of an actual antenna; view B is a cut-away view of the antenna; and view C is a simplified diagram of the antenna.

1-34 Figure 1-24. - Antenna.

COMPONENTS of The ELECTROMagnetic WAVE

An electromagnetic wave consists of two primary components - an ELECTRIC FIELD and a Magnetic FIELD. The electric field results from the force of voltage, and the magnetic field results from the flow of current.

Although electromagnetic fields that are radiated are commonly considered to be waves, under certain circumstances their behavior makes them appear to have some of the properties of particles. In general, however, it is easier to picture electromagnetic radiation in space as horizontal and vertical lines of force oriented at right angles to each other. These lines of force are made up of an electric field (E) and a magnetic field (H), which together make up the electromagnetic field in space.

The electric and magnetic fields radiated from an antenna form the electromagnetic field. This field is responsible for the transmission and reception of electromagnetic energy through free space. An antenna, however, is also part of the electrical circuit of a transmitter or a receiver and is equivalent to a circuit containing inductance, capacitance, and resistance. Therefore, the antenna can be expected to display definite voltage and current relationships with respect to a given input. a current through the antenna produces a magnetic field, and a charge on the antenna produces an electric field. These two fields combine to form the INDUCTION field. To help you gain a better understanding of antenna theory, we must review some basic electrical concepts. We will review voltage and its electric field, current and its magnetic field, and their relationship to propagation of electrical energy.

Q44.   What are the two components (fields) that make up the electromagnetic wave?

1-35

Q45.   What do we call a conductor (or set of conductors) that radiates electromagnetic energy into space?

Electric Field

Around every electrically charged object is a force field that can be detected and measured. This force field can cause electric charges to move in the field. When an object is charged electrically, there is either a greater or a smaller concentration of electrons than normal. Thus, a difference of potential exists between a charged object and an uncharged object. An electric field is, therefore, associated with a difference of potential, or a voltage.

This invisible field of force is commonly represented by lines that are drawn to show the paths along which the force acts. The lines representing the electric field are drawn in the direction that a single positive charge would normally move under the influence of that field. a large electric force is shown by a large concentration of lines; a weak force is indicated by a few lines.

When a capacitor is connected across a source of voltage, such as a battery, it is charged by a particular amount, depending on the voltage and the value of capacitance. (See figure 1-25.) Because of the emf (electromotive force) of the battery, negative charges flow to the lower plate, leaving the upper plate positively charged. Along with the growth of charge, the electric field is also building up. The flux lines are directed from the positive to the negative charges and at right angles to the plates. When the capacitor is fully charged, the voltage of the capacitor is equal to the voltage of the source and opposite in polarity. The charged capacitor stores the energy in the form of an electric field. It can be said, therefore, that an electric field indicates voltage. Figure 1-25. - Electric fields between plates.

If the two plates of the capacitor are spread farther apart, the electric field must curve to meet the plates at right angles (fig. 1-26). The straight lines in view a of figure 1-26 become arcs in view B, and approximately semicircles in view C, where the plates are in a straight line. Instead of flat metal plates, as in the capacitor, the two elements can take the form of metal rods or wires and form the basic antenna.

1-36 Figure 1-26. - Electric fields between plates at different angles.

In figure 1-27, two rods replace the plates of the capacitor, and the battery is replaced by an ac source generating a 60-hertz signal. On the positive alternation of the 60-hertz generator, the electric field extends from the positively charged rod to the negatively charged rod, as shown. On the negative alternation, the charge is reversed. The previous explanation of electrons moving from one plate to the other of the capacitor in figure 1-25 can also be applied to the rods in figure 1-27. Figure 1-27. - Electric fields between elements.

1-37

The polarity of charges and the direction of the electric fields will reverse polarity and direction periodically at the frequency of the voltage source. The electric field will build up from zero to maximum in one direction and then collapse back to zero. Next, the field will build up to maximum in the opposite direction and then collapse back to zero. This complete reversal occurs during a single cycle of the source voltage. The Half-WAVE DIPOLE Antenna (two separate rods in line as illustrated in figure 1-27)

is the fundamental element normally used as a starting point of reference in any discussion concerning the radiation of electromagnetic energy into space. If RF energy from the ac generator (or transmitter) is supplied to the element of an antenna, the voltage across the antenna lags the current by 90 degrees. The antenna acts as if it were a capacitor.

Magnetic Field

When current flows through a conductor, a magnetic field is set up in the area surrounding the conductor. In fact, any moving electrical charge will create a magnetic field. The magnetic field is a region in space where a magnetic force can be detected and measured. There are two other fields involved - an INDUCTION FIELD, which exists close to the conductor carrying the current, and the Radiation FIELD, which becomes detached from the current-carrying rod and travels through space.

To represent the magnetic field, lines of force are again used to illustrate the energy. Magnetic lines are not drawn between the rods, nor between high- and low-potential points, as the E lines that were discussed earlier. Magnetic lines are created by the flow of current rather than the force of voltage. The magnetic lines of force, therefore, are drawn at right angles to the direction of current flow.

The magnetic fields that are set up around two parallel rods, as shown in figure 1-28 view A, are in maximum opposition. Rod 1 contains a current flowing from the generator, while rod 2 contains a current flowing toward the generator. As a result, the direction of the magnetic field surrounding rod 1 is opposite the direction of the magnetic field surrounding rod 2. This will cause cancellation of part or all of both magnetic fields with a resultant decrease in radiation of the electromagnetic energy. View B illustrates the fact that if the far ends of rods 1 and 2 are separated from each other while the rods are still connected to the generator at the near ends, more space, and consequently less opposition, will occur between the magnetic fields of the two rods. View C illustrates the fact that placing the rods in line makes the currents through both rods flow in the same direction. Therefore, the two magnetic fields are in the same direction; thus, maximum electromagnetic radiation into space can be obtained.

1-38 Figure 1-28. - Magnetic fields around elements.

Magnetic lines of force are indicated by the letter H and are called H lines. The direction of the magnetic lines may be determined by use of the left-hand rule for a conductor: If you grasp the conductor in your left hand with the thumb extended in the direction of the current flow, your fingers will point in the direction of the magnetic lines of force. In view C of figure 1-28, the direction of current flow is upward along both halves of the elements (conductors). The lines of magnetic force (flux) form concentric loops that are perpendicular to the direction of current flow. The arrowheads on the loops indicate the direction of the field. The left-hand rule is used to determine the direction of the magnetic field and is illustrated in figure 1-29. If the thumb of the left hand is extended in the direction of current flow and the fingers clenched, then the rough circles formed by the fingers indicate the direction of the magnetic field. Figure 1-29. - Left-hand rule for conducting elements.

1-39

Q46.   What do we call the field that is created between two rods when a voltage is applied to them?

Q47.   When current flows through a conductor, a field is created around the conductor. What do we call this field?

Combined Electric and Magnetic Fields

The generator, shown in figure 1-30, provides the voltage, which creates an electric field, and current, which creates a magnetic field. This source voltage and current build up to maximum values in one direction during one half-cycle, and then build up to maximum values in the other direction during the next half-cycle. Both the electric and magnetic fields alternate from minimum through maximum values in synchronization with the changing voltage and current. The electric and magnetic fields reach their maximum intensity a quarter-cycle apart. These fields form the induction field. Since the current and voltage that produce these E and H fields are 90 degrees out of phase, the fields will also be 90 degrees out of phase. Figure 1-30. - Relationship of E-lines, and current flow.

Q48.   An induction field is created around a conductor when current flows through it. What do we call the field that detaches itself from the conductor and travels through space?

1-40

 NEETS Modules - Matter, Energy, and Direct Current - Alternating Current and Transformers - Circuit Protection, Control, and Measurement - Electrical Conductors, Wiring Techniques, and Schematic Reading - Generators and Motors - Electronic Emission, Tubes, and Power Supplies - Solid-State Devices and Power Supplies - Amplifiers - Wave-Generation and Wave-Shaping Circuits - Wave Propagation, Transmission Lines, and Antennas - Microwave Principles - Modulation Principles - Introduction to Number Systems and Logic Circuits - - Introduction to Microelectronics - Principles of Synchros, Servos, and Gyros - Introduction to Test Equipment - Radio-Frequency Communications Principles - Radar Principles - The Technician's Handbook, Master Glossary - Test Methods and Practices - Introduction to Digital Computers - Magnetic Recording - Introduction to Fiber Optics Note: Navy Electricity and Electronics Training Series (NEETS) content is U.S. Navy property in the public domain.    