Electronics World articles Popular Electronics articles QST articles Radio & TV News articles Radio-Craft articles Radio-Electronics articles Short Wave Craft articles Wireless World articles Google Search of RF Cafe website Sitemap Electronics Equations Mathematics Equations Equations physics Manufacturers & distributors LinkedIn Crosswords Engineering Humor Kirt's Cogitations RF Engineering Quizzes Notable Quotes Calculators Education Engineering Magazine Articles Engineering software RF Cafe Archives Magazine Sponsor RF Cafe Sponsor Links Saturday Evening Post NEETS EW Radar Handbook Microwave Museum About RF Cafe Aegis Power Systems Alliance Test Equipment Centric RF Empower RF ISOTEC Reactel RF Connector Technology San Francisco Circuits Anritsu Amplifier Solutions Anatech Electronics Axiom Test Equipment Conduct RF Copper Mountain Technologies Exodus Advanced Communications Innovative Power Products KR Filters LadyBug Technologies Rigol TotalTemp Technologies Werbel Microwave Windfreak Technologies Wireless Telecom Group Withwave Resources Vintage Magazines RF Cafe Software WhoIs entry for RF Cafe.com Thank you for visiting RF Cafe!
Innovative Power Products (IPP) RF Combiners / Dividers

LadyBug RF Power Sensors

Anritsu Test Equipment - RF Cafe

Please Support RF Cafe by purchasing my  ridiculously low-priced products, all of which I created.

RF Cascade Workbook for Excel

RF & Electronics Symbols for Visio

RF & Electronics Symbols for Office

RF & Electronics Stencils for Visio

RF Workbench

T-Shirts, Mugs, Cups, Ball Caps, Mouse Pads

These Are Available for Free

Espresso Engineering Workbook™

Smith Chart™ for Excel

Innovative Power Products (IPP) Baluns & Transformers

Electronic Warfare and Radar Systems Engineering Handbook
- EMP / Aircraft Dimensions -

[Go to TOC]

EMP / AIRCRAFT DIMENSIONS

An aircraft flying in the vicinity of an electromagnetic pulse (EMP) acts like a receiving antenna and picks up EMP radiation in relation to size like a dipole (or half-wavelength dipole). The electromagnetic pulse spectrum decreases above 1 MHz as shown in Figure 1, so an F-14 aircraft that is an optimum ½ wavelength antenna at ~8 MHz will pick up less EMP voltage than a B-52 or an aircraft with a trailing wire antenna. A rule of thumb for the voltage picked up is :

VEMP = 8.1 volts/ft times the maximum dimension of the aircraft in feet

This rule of thumb was generated because a single linear relationship between voltage and aperture seemed to exist and compared favorably with more complex calculations for voltage picked up by various aircraft when subjected to EMP.

Table 1 shows various aircraft and the frequencies they would be most susceptible to, using f = c/8, where 8 matches the selected aircraft dimension for maximum "antenna reception effect". This should be a design consideration when trying to screen onboard avionics from the effects of EMP.

The following is a partial listing of aircraft types vs identifying prefix letters (several are used in Table 1):

 

A   Attack

B   Bomber

C   Cargo

E   Electronic Surveillance

F   Fighter

H   Helicopter

K   Tanker

O   Observation

P   Patrol

Q  Special mission

R   Reconnaissance

S   Anti Sub/Ship

T   Trainer

U   Utility

V   Vertical or Short Takeoff

     and Landing (V/STOL)

X   Experimental

Y   Prototype

 

EMP as a Function of Frequency  - RF Cafe

Figure 1. EMP as a Function of Frequency

 

 

Table 1. AIRCRAFT DIMENSIONS AND EQUIVALENT ANTENNA APERTURE

AIRCRAFT DIMENSIONS AND EQUIVALENT ANTENNA APERTURE - RF Cafe

Table of Contents for Electronics Warfare and Radar Engineering Handbook

Introduction | Abbreviations | Decibel | Duty Cycle | Doppler Shift | Radar Horizon / Line of Sight | Propagation Time / Resolution | Modulation | Transforms / Wavelets | Antenna Introduction / Basics | Polarization | Radiation Patterns | Frequency / Phase Effects of Antennas | Antenna Near Field | Radiation Hazards | Power Density | One-Way Radar Equation / RF Propagation | Two-Way Radar Equation (Monostatic) | Alternate Two-Way Radar Equation | Two-Way Radar Equation (Bistatic) | Jamming to Signal (J/S) Ratio - Constant Power [Saturated] Jamming | Support Jamming | Radar Cross Section (RCS) | Emission Control (EMCON) | RF Atmospheric Absorption / Ducting | Receiver Sensitivity / Noise | Receiver Types and Characteristics | General Radar Display Types | IFF - Identification - Friend or Foe | Receiver Tests | Signal Sorting Methods and Direction Finding | Voltage Standing Wave Ratio (VSWR) / Reflection Coefficient / Return Loss / Mismatch Loss | Microwave Coaxial Connectors | Power Dividers/Combiner and Directional Couplers | Attenuators / Filters / DC Blocks | Terminations / Dummy Loads | Circulators and Diplexers | Mixers and Frequency Discriminators | Detectors | Microwave Measurements | Microwave Waveguides and Coaxial Cable | Electro-Optics | Laser Safety | Mach Number and Airspeed vs. Altitude Mach Number | EMP/  Aircraft Dimensions | Data Busses | RS-232 Interface | RS-422 Balanced Voltage Interface | RS-485 Interface | IEEE-488 Interface Bus (HP-IB/GP-IB) | MIL-STD-1553 & 1773 Data Bus |

  This HTML version may be printed but not reproduced on websites.

Innovative Power Products (IPP) Baluns & Transformers
Crane Aerospace Electronics Microwave Solutions: Space Qualified Passive Products

RF Electronics Shapes, Stencils for Office, Visio by RF Cafe

PCB Directory (Manufacturers)