[Go to TOC]
TERMINATIONS / DUMMY LOADS
A termination is a one-port device with an impedance that matches the characteristic impedance of a given
transmission line. It is attached to a certain terminal or port of a device to absorb the power transmitted to
that terminal or to establish a reference impedance at that terminal. Important parameters of a termination are
its VSWR and power handling capacity. In a receiver, terminations are usually placed at various unconnected ports
of components such as hybrid and power dividers to keep the VSWR of the signal path low. It is extremely important
that the isolated port in a directional coupler and the unused port of a power divider (i.e., only three ports of
a four-way power divider are used) be properly terminated. All of the design considerations of directional
couplers and power dividers are based on the fact that all ports are terminated with matched loads. If an unused
port is not properly terminated, then the isolation between the output ports will be reduced which may severely
degrade the performance of the receiver.
A termination is the terminology used to refer to a low power, single terminal device intended to terminate a
transmission line. Similar devices designed to accommodate high power are generally termed dummy loads.
TERMINATIONS:
Terminations are employed to terminate unconnected ports on devices when measurements are being performed.
They are useful as dummy antennas and as terminal loads for impedance measurements of transmission devices such as
filters and attenuators. The resistive elements in most terminations are especially fabricated for use at
microwave frequencies. Two types are commonly employed: (1) resistive film elements, and (2) molded resistive
tapers. The resistive film is very thin compared to the skin depth and normally very short relative to wavelength
at the highest operating frequency. The molded taper consists of a dissipative material evenly dispersed in a
properly cured dielectric medium. Both forms of resistive elements provide compact, rugged terminations suitable
for the most severe environmental conditions with laboratory stability and accuracy. Terminations should be
properly matched to the characteristic impedance of a transmission line. The termination characteristics of
primary concern are: a. operating frequency range d. VSWR b. average power handling
capability e. size c. operating temperature range f. weight Many microwave systems
employ directional couplers which require terminations on at least one port, and most have various modes of
operation or test where terminations are needed on certain terminals. A matched termination of a
generalized transmission line is ideally represented by an infinite length of that line having small, but non-zero
loss per unit length so that all incident energy is absorbed and none is reflected. Standard mismatches are
useful as standards of reflection in calibrating reflectometer setups and other impedance measuring equipment.
They are also used during testing to simulate specific mismatches which would be encountered on the terminals of
components once the component is installed in the actual system. The following table shows common mismatches with
the impedance that can provide the mismatch.
DUMMY LOADS
A dummy load is a high power one port device intended to terminate a transmission line. They are primarily
employed to test high power microwave systems at full power capacity. Low power coaxial loads are generally termed
terminations and typically handle one watt or less. Most radars or communications systems have a dummy load
integrated into them to provide a non-radiating or EMCON mode of operation, or for testing (maintenance).
Three types of dissipative material are frequently employed in dummy loads: (1) lossy plastic, (2) refractory, and
(3) water. The lossy plastic consists of particles of lossy material suspended in plastic medium. This
material may be designed to provide various attenuations per unit length but is limited as to operating
temperature. It is employed primarily for low power applications. The refractory material is a rugged
substance that may be operated at temperatures up to 1600EF. It is virtually incapable of being machined by
ordinary means but is often fabricated through diamond wheel grinding processes. Otherwise material must be fired
in finished form. Such material is employed in most high power applications. The dissipative properties of
water are also employed for dummy load applications. Energy from the guide is coupled through a leaky wall to the
water which flows alongside the main guide. Water loads are employed for extremely high power and calorimetric
applications. While dummy loads can operate over full waveguide bands, generally a more economical unit can
be manufactured for use over narrower frequency ranges. The power rating of a dummy load is a complex
function dependent upon many parameters, including average and peak power, guide pressure, external temperature,
guide size, air flow, and availability of auxiliary coolant. The average and peak powers are interrelated in that
the peak power capacity is a function of the operating temperature which in turn is a function of the average
power.
Table of Contents for Electronics Warfare and Radar Engineering Handbook
Introduction |
Abbreviations | Decibel | Duty
Cycle | Doppler Shift | Radar Horizon / Line
of Sight | Propagation Time / Resolution | Modulation
| Transforms / Wavelets | Antenna Introduction
/ Basics | Polarization | Radiation Patterns |
Frequency / Phase Effects of Antennas |
Antenna Near Field | Radiation Hazards |
Power Density | One-Way Radar Equation / RF Propagation
| Two-Way Radar Equation (Monostatic) |
Alternate Two-Way Radar Equation |
Two-Way Radar Equation (Bistatic) |
Jamming to Signal (J/S) Ratio - Constant Power [Saturated] Jamming
| Support Jamming | Radar Cross Section (RCS) |
Emission Control (EMCON) | RF Atmospheric
Absorption / Ducting | Receiver Sensitivity / Noise |
Receiver Types and Characteristics |
General Radar Display Types |
IFF - Identification - Friend or Foe | Receiver
Tests | Signal Sorting Methods and Direction Finding |
Voltage Standing Wave Ratio (VSWR) / Reflection Coefficient / Return
Loss / Mismatch Loss | Microwave Coaxial Connectors |
Power Dividers/Combiner and Directional Couplers |
Attenuators / Filters / DC Blocks |
Terminations / Dummy Loads | Circulators
and Diplexers | Mixers and Frequency Discriminators |
Detectors | Microwave Measurements |
Microwave Waveguides and Coaxial Cable |
Electro-Optics | Laser Safety |
Mach Number and Airspeed vs. Altitude Mach Number |
EMP/ Aircraft Dimensions | Data Busses | RS-232 Interface
| RS-422 Balanced Voltage Interface | RS-485 Interface |
IEEE-488 Interface Bus (HP-IB/GP-IB) | MIL-STD-1553 &
1773 Data Bus | This HTML version may be printed but not reproduced on websites.
|