Search RFC: |                                     
Please support my efforts by advertising!
About | Sitemap | Homepage Archive
Serving a Pleasant Blend of Yesterday, Today, and Tomorrow™
Vintage Magazines
Electronics World
Popular Electronics
Radio & TV News
QST | Pop Science
Popular Mechanics
Radio-Craft
Radio-Electronics
Short Wave Craft
Electronics | OFA
Saturday Eve Post
Please Support My Advertisers!

Aegis Power | Centric RF | RFCT
Alliance Test | Empower RF
Isotec | Reactel | SF Circuits

Formulas & Data

Electronics | RF
Mathematics
Mechanics | Physics


Calvin & Phineas

Resources

Articles, Forums, Radar
Magazines, Museum
Radio Service Data
Software, Videos


Artificial Intelligence

Entertainment

Crosswords, Humor Cogitations, Podcast
Quotes, Quizzes

Parts & Services

1000s of Listings

        Software:

Please DONATE

RF Cascade Workbook | RF Symbols for Office
RF Symbols for Visio | RF Stencils for Visio
Espresso Engineering WorkbookCafe Press
dB Control dB-9006 Magnum Opus Synthesizer - RF Cafe

Gauss's Law

Electronics & Technology
- See Full List of AI Topics -

Gauss's law is a fundamental law in physics that relates the electric flux through a closed surface to the charge enclosed within the surface. It is named after the German mathematician and physicist Carl Friedrich Gauss, who formulated the law in its modern form in 1835.

In its integral form, Gauss's law states that the electric flux through a closed surface is proportional to the charge enclosed within the surface:

∮ S * E · dA = Qenc / ε0

where:

∮ S is the surface integral over a closed surface S

E is the electric field at each point on the surface S
 ·  indicates the dot (or inner) product
dA is the differential area element of the surface
Qenc is the total charge enclosed within the surface
ε0 is the electric constant, also known as the vacuum permittivity.

This equation implies that electric field lines originating from a positive charge and terminating at a negative charge are closed lines, with no beginning or end, and that the total electric flux through any closed surface is proportional to the charge enclosed within the surface. Gauss's law is a powerful tool for calculating electric fields in situations with high symmetry, such as spherical and cylindrical symmetry.

An alternate form of Gauss's law is the differential form, which relates the divergence of the electric field to the charge density at any point in space:

∇ · E = ρ / ε0

where:

∇ represents the divergence operator
 ·  indicates the dot (or inner) product
E represents the electric field vector
ρ represents the charge density at a given point in space
ε0 represents the electric constant or the permittivity of free space.

This equation states that the divergence of the electric field at any point in space is proportional to the charge density at that point. In other words, the electric field "flows" away from regions of high charge density, and "converges" towards regions of low charge density. This form of Gauss's law is particularly useful in situations where the electric field is not uniform, or where the geometry of the charge distribution is complex. It can also be used to derive the integral form of Gauss's law by applying the divergence theorem.


AI Competition: ChatGPT-Gemini-Grok 3, GabAI - RF CafeThis content was generated by primarily the ChatGPT (OpenAI), and/or Gemini (Google), and/or Arya (GabAI), and/or Grok (x.AI), and/or DeepSeek artificial intelligence (AI) engine. Some review was performed to help detect and correct any inaccuracies; however, you are encouraged to verify the information yourself if it will be used for critical applications. In some cases, multiple solicitations to the AI engine(s) was(were) used to assimilate final content. Images and external hyperlinks have also been added occasionally. Courts have ruled that AI-generated content is not subject to copyright restrictions, but since I modify them, everything here is protected by RF Cafe copyright. Many of the images are likewise generated and modified. Your use of this data implies an agreement to hold totally harmless Kirt Blattenberger, RF Cafe, and any and all of its assigns. Thank you. Here are the major categories.

AI Technical Trustability Update

While working on an update to my RF Cafe Espresso Engineering Workbook project to add a couple calculators about FM sidebands (available soon). The good news is that AI provided excellent VBA code to generate a set of Bessel function plots. The bad news is when I asked for a table showing at which modulation indices sidebands 0 (carrier) through 5 vanish, none of the agents got it right. Some were really bad. The AI agents typically explain their reason and method correctly, then go on to produces bad results. Even after pointing out errors, subsequent results are still wrong. I do a lot of AI work and see this often, even with subscribing to professional versions. I ultimately generated the table myself. There is going to be a lot of inaccurate information out there based on unverified AI queries, so beware.

Electronics & High Tech Companies | Electronics & Tech Publications | Electronics & Tech Pioneers | Electronics & Tech Principles | Tech Standards Groups & Industry Associations | Societal Influences on Technology

dB Control dB-9006 Magnum Opus Synthesizer - RF Cafe